Recent advances in artificial intelligence (AI) and deep learning (DL) have impacted many scientific fields including biomedical maging. Magnetic resonance imaging (MRI) is a well-established method in breast imaging with several indications includin...
With the development of computer vision and image segmentation technology, medical image segmentation and recognition technology has become an important part of computer-aided diagnosis. The traditional image segmentation method relies on artificial ...
PURPOSE: Patients with high-grade osteosarcoma undergo several chemotherapy cycles before surgical intervention. Response to chemotherapy, however, is affected by intratumor heterogeneity. In this study, we assessed the ability of a machine learning ...
AIM: To develop an algorithm, based on convolutional neural network (CNN), for the classification of lung cancer lesions as T1-T2 or T3-T4 on staging fluorodeoxyglucose positron emission tomography (FDG-PET)/CT images.
PURPOSE: In this study, we proposed an automated deep learning (DL) method for head and neck cancer (HNC) gross tumor volume (GTV) contouring on positron emission tomography-computed tomography (PET-CT) images.
The identification of bone lesions is crucial in the diagnostic assessment of multiple myeloma (MM). Ga-Pentixafor PET/CT can capture the abnormal molecular expression of CXCR-4 in addition to anatomical changes. However, whole-body detection of doze...
Molecular imaging enables the visualization and quantitative analysis of the alterations of biological procedures at molecular and/or cellular level, which is of great significance for early detection of cancer. In recent years, deep leaning has been...
OBJECTIVE: We aimed to propose an automatic method based on Support Vector Machine (SVM) and Dynamic Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI) to segment the tumor lesions of head and neck cancer (HNC).