AI Medical Compendium Journal:
Genome biology

Showing 51 to 60 of 89 articles

Biologically relevant transfer learning improves transcription factor binding prediction.

Genome biology
BACKGROUND: Deep learning has proven to be a powerful technique for transcription factor (TF) binding prediction but requires large training datasets. Transfer learning can reduce the amount of data required for deep learning, while improving overall...

LightGBM: accelerated genomically designed crop breeding through ensemble learning.

Genome biology
LightGBM is an ensemble model of decision trees for classification and regression prediction. We demonstrate its utility in genomic selection-assisted breeding with a large dataset of inbred and hybrid maize lines. LightGBM exhibits superior performa...

NanoCaller for accurate detection of SNPs and indels in difficult-to-map regions from long-read sequencing by haplotype-aware deep neural networks.

Genome biology
Long-read sequencing enables variant detection in genomic regions that are considered difficult-to-map by short-read sequencing. To fully exploit the benefits of longer reads, here we present a deep learning method NanoCaller, which detects SNPs usin...

Easy-Prime: a machine learning-based prime editor design tool.

Genome biology
Prime editing is a revolutionary genome-editing technology that can make a wide range of precise edits in DNA. However, designing highly efficient prime editors (PEs) remains challenging. We develop Easy-Prime, a machine learning-based program traine...

Chromatin interaction neural network (ChINN): a machine learning-based method for predicting chromatin interactions from DNA sequences.

Genome biology
Chromatin interactions play important roles in regulating gene expression. However, the availability of genome-wide chromatin interaction data is limited. We develop a computational method, chromatin interaction neural network (ChINN), to predict chr...

SCAPTURE: a deep learning-embedded pipeline that captures polyadenylation information from 3' tag-based RNA-seq of single cells.

Genome biology
Single-cell RNA-seq (scRNA-seq) profiles gene expression with high resolution. Here, we develop a stepwise computational method-called SCAPTURE to identify, evaluate, and quantify cleavage and polyadenylation sites (PASs) from 3' tag-based scRNA-seq....

MichiGAN: sampling from disentangled representations of single-cell data using generative adversarial networks.

Genome biology
Deep generative models such as variational autoencoders (VAEs) and generative adversarial networks (GANs) generate and manipulate high-dimensional images. We systematically assess the complementary strengths and weaknesses of these models on single-c...

Schema: metric learning enables interpretable synthesis of heterogeneous single-cell modalities.

Genome biology
A complete understanding of biological processes requires synthesizing information across heterogeneous modalities, such as age, disease status, or gene expression. Technological advances in single-cell profiling have enabled researchers to assay mul...

Microbiome meta-analysis and cross-disease comparison enabled by the SIAMCAT machine learning toolbox.

Genome biology
The human microbiome is increasingly mined for diagnostic and therapeutic biomarkers using machine learning (ML). However, metagenomics-specific software is scarce, and overoptimistic evaluation and limited cross-study generalization are prevailing i...

seqQscorer: automated quality control of next-generation sequencing data using machine learning.

Genome biology
Controlling quality of next-generation sequencing (NGS) data files is a necessary but complex task. To address this problem, we statistically characterize common NGS quality features and develop a novel quality control procedure involving tree-based ...