AI Medical Compendium Journal:
Medical physics

Showing 11 to 20 of 732 articles

Novel pre-spatial data fusion deep learning approach for multimodal volumetric outcome prediction models in radiotherapy.

Medical physics
BACKGROUND: Given the recent increased emphasis on multimodal neural networks to solve complex modeling tasks, the problem of outcome prediction for a course of treatment can be framed as fundamentally multimodal in nature. A patient's response to tr...

Chan-Vese aided fuzzy C-means approach for whole breast and fibroglandular tissue segmentation: Preliminary application to real-world breast MRI.

Medical physics
BACKGROUND: Magnetic resonance imaging (MRI) is a highly sensitive modality for diagnosing breast cancer, providing an expanding range of clinical usages that are crucial for the care of women at elevated risk of breast cancer development. Segmentati...

Optimization of sparse-view CT reconstruction based on convolutional neural network.

Medical physics
BACKGROUND: Sparse-view CT shortens scan time and reduces radiation dose but results in severe streak artifacts due to insufficient sampling data. Deep learning methods can now suppress these artifacts and improve image quality in sparse-view CT reco...

TransAnaNet: Transformer-based anatomy change prediction network for head and neck cancer radiotherapy.

Medical physics
BACKGROUND: Adaptive radiotherapy (ART) can compensate for the dosimetric impact of anatomic change during radiotherapy of head-neck cancer (HNC) patients. However, implementing ART universally poses challenges in clinical workflow and resource alloc...

Automating the optimization of proton PBS treatment planning for head and neck cancers using policy gradient-based deep reinforcement learning.

Medical physics
BACKGROUND: Proton pencil beam scanning (PBS) treatment planning for head and neck (H&N) cancers is a time-consuming and experience-demanding task where a large number of potentially conflicting planning objectives are involved. Deep reinforcement le...

Hybrid transformer-based model for mammogram classification by integrating prior and current images.

Medical physics
BACKGROUND: Breast cancer screening via mammography plays a crucial role in early detection, significantly impacting women's health outcomes worldwide. However, the manual analysis of mammographic images is time-consuming and requires specialized exp...

Impact of deep learning reconstructions on image quality and liver lesion detectability in dual-energy CT: An anthropomorphic phantom study.

Medical physics
BACKGROUND: Deep learning image reconstruction (DLIR) algorithms allow strong noise reduction while preserving noise texture, which may potentially improve hypervascular focal liver lesions.

Segmentation of coronary artery and calcification using prior knowledge based deep learning framework.

Medical physics
BACKGROUND: Computed tomography angiography (CTA) is used to screen for coronary artery calcification. As the coronary artery has complicated structure and tiny lumen, manual screening is a time-consuming task. Recently, many deep learning methods ha...

Radiogenomic explainable AI with neural ordinary differential equation for identifying post-SRS brain metastasis radionecrosis.

Medical physics
BACKGROUND: Stereotactic radiosurgery (SRS) is widely used for managing brain metastases (BMs), but an adverse effect, radionecrosis, complicates post-SRS management. Differentiating radionecrosis from tumor recurrence non-invasively remains a major ...

Deep learning-based Monte Carlo dose prediction for heavy-ion online adaptive radiotherapy and fast quality assurance: A feasibility study.

Medical physics
BACKGROUND: Online adaptive radiotherapy (OART) and rapid quality assurance (QA) are essential for effective heavy ion therapy (HIT). However, there is a shortage of deep learning (DL) models and workflows for predicting Monte Carlo (MC) doses in suc...