To better integrate into processes like rapid adaptive planning and quality assurance, this study aims to propose a lightweight and universal proton spot dose calculation model suitable for arbitrary energies.Given the alignment between the character...
. Personalized transcranial magnetic stimulation (TMS) requires individualized head models that incorporate non-uniform conductivity to enable target-specific stimulation. Accurately estimating non-uniform conductivity in individualized head models r...
Head-and-neck simultaneous integrated boost (SIB) treatment planning using intensity modulated radiation therapy is particularly challenging due to the proximity to organs-at-risk. Depending on the specific clinical conditions, different parotid-spar...
Motion artifacts remain a significant challenge in cardiac CT imaging, often impairing the accurate detection and diagnosis of cardiac diseases. These artifacts result from involuntary cardiac motion, and traditional mitigation methods typically rely...
Prostate lesion segmentation from multiparametric magnetic resonance images is particularly challenging due to the limited availability of labeled data. This scarcity of annotated images makes it difficult for supervised models to learn the complex f...
When it comes to the implementation of deep-learning based breast cancer risk (BCR) prediction models in clinical settings, it is important to be aware that these models could be sensitive to various factors, especially those arising from the acquisi...
. Pixelated detectors with single-ended readout are routinely used by commercial positron emission tomography scanners owing to their good energy and timing resolution and optimized manufacturing, but they typically do not provide depth-of-interactio...
FLASH radiotherapy (RT), microbeam RT (MRT) and minibeam RT (MBRT) are novel RT techniques that have been shown to reduce normal tissue complication probabilities, by modulating the dose distributions through different parameters in space and time. T...
Acute ischemic stroke (AIS) patients with good collaterals tend to have better outcomes after endovascular therapy. Existing collateral scoring methods rely mainly on vessel segmentation and convolutional neural networks (CNNs), often ignoring bilate...
This study aimed to establish a link between the microstructure of simulated fibrotic liver tissues and the measured shear wave speed (SWS) variability using a machine-learning (ML)-based approach.. Fibrotic liver tissues were simulated using biphasi...