AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Adolescent

Showing 231 to 240 of 2957 articles

Clear Filters

Evaluation of machine learning models for predicting xerostomia in adults with head and neck cancer during proton and heavy ion radiotherapy.

Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology
BACKGROUND AND PURPOSE: Few studies have examined the factors associated with xerostomia during proton and carbon ion radiotherapy for head and neck cancer (HNC), which are reported to have fewer toxic effects compared to traditional photon-based rad...

Enhancing prediction of major depressive disorder onset in adolescents: A machine learning approach.

Journal of psychiatric research
Major Depressive Disorder (MDD) is a prevalent mental health condition that often begins in adolescence, with significant long-term implications. Indicated prevention programs targeting adolescents with mild symptoms have shown efficacy, yet the meth...

Development and external validation of a machine learning model for brain injury in pediatric patients on extracorporeal membrane oxygenation.

Critical care (London, England)
BACKGROUND: Patients supported by extracorporeal membrane oxygenation (ECMO) are at a high risk of brain injury, contributing to significant morbidity and mortality. This study aimed to employ machine learning (ML) techniques to predict brain injury ...

Widespread use of ChatGPT and other Artificial Intelligence tools among medical students in Uganda: A cross-sectional study.

PloS one
BACKGROUND: Chat Generative Pre-trained Transformer (ChatGPT) is a 175-billion-parameter natural language processing model that uses deep learning algorithms trained on vast amounts of data to generate human-like texts such as essays. Consequently, i...

Utilizing natural language processing to identify pediatric patients experiencing status epilepticus.

Seizure
PURPOSE: Compare the identification of patients with established status epilepticus (ESE) and refractory status epilepticus (RSE) in electronic health records (EHR) using human review versus natural language processing (NLP) assisted review.

Multimodal fuzzy logic-based gait evaluation system for assessing children with cerebral palsy.

Scientific reports
Gait analysis is crucial for identifying functional deviations from the normal gait cycle and is essential for the individualized treatment of motor disorders such as cerebral palsy (CP). The primary contribution of this study is the introduction of ...

Machine learning-derived asthma and allergy trajectories in children: a systematic review and meta-analysis.

European respiratory review : an official journal of the European Respiratory Society
INTRODUCTION: Numerous studies have characterised trajectories of asthma and allergy in children using machine learning, but with different techniques and mixed findings. The present work aimed to summarise the evidence and critically appraise the me...

Multimodal machine learning for analysing multifactorial causes of disease-The case of childhood overweight and obesity in Mexico.

Frontiers in public health
BACKGROUND: Mexico has one of the highest global incidences of paediatric overweight and obesity. Public health interventions have shown only moderate success, possibly from relying on knowledge extracted using limited types of statistical data analy...

Key risk factors of generalized anxiety disorder in adolescents: machine learning study.

Frontiers in public health
Adolescents worldwide are increasingly affected by mental health disorders, with anxiety disorders, including Generalized Anxiety Disorder (GAD), being particularly prevalent. Despite its significant impact, GAD in adolescents often remains underdiag...

Plasma Epstein-Barr Virus DNA load for diagnostic and prognostic assessment in intestinal Epstein-Barr Virus infection.

Frontiers in cellular and infection microbiology
BACKGROUND: The prospective application of plasma Epstein-Barr virus (EBV) DNA load as a noninvasive measure of intestinal EBV infection remains unexplored. This study aims to identify ideal threshold levels for plasma EBV DNA loads in the diagnosis ...