AIMC Topic: Adult

Clear Filters Showing 2261 to 2270 of 14452 articles

Machine learning for predicting severe dengue in Puerto Rico.

Infectious diseases of poverty
BACKGROUND: Distinguishing between non-severe and severe dengue is crucial for timely intervention and reducing morbidity and mortality. World Health Organization (WHO)-recommended warning signs offer a practical approach for clinicians but have limi...

Development of a machine learning model related to explore the association between heavy metal exposure and alveolar bone loss among US adults utilizing SHAP: a study based on NHANES 2015-2018.

BMC public health
BACKGROUND: Alveolar bone loss (ABL) is common in modern society. Heavy metal exposure is usually considered to be a risk factor for ABL. Some studies revealed a positive trend found between urinary heavy metals and periodontitis using multiple logis...

Error fields: personalized robotic movement training that augments one's more likely mistakes.

Scientific reports
Control of movement is learned and uses error feedback during practice to predict actions for the next movement. We previously showed that augmenting error can enhance learning, but while such findings are encouraging, the methods need to be refined ...

Panoramic radiographic features for machine learning based detection of mandibular third molar root and inferior alveolar canal contact.

Scientific reports
This study uses machine learning (ML) to elucidate the contact relationship between the mandibular third molar (M3M) and the inferior alveolar canal (IAC), leading to three major contributions; (1) The first publicly accessible PR image dataset with ...

Consecutive prediction of adverse maternal outcomes of preeclampsia, using the PIERS-ML and fullPIERS models: A multicountry prospective observational study.

PLoS medicine
BACKGROUND: Preeclampsia is a potentially life-threatening pregnancy complication. Among women whose pregnancies are complicated by preeclampsia, the Preeclampsia Integrated Estimate of RiSk (PIERS) models (i.e., the PIERS Machine Learning [PIERS-ML]...

An Explainable Unified Framework of Spatio-Temporal Coupling Learning With Application to Dynamic Brain Functional Connectivity Analysis.

IEEE transactions on medical imaging
Time-series data such as fMRI and MEG carry a wealth of inherent spatio-temporal coupling relationship, and their modeling via deep learning is essential for uncovering biological mechanisms. However, current machine learning models for mining spatio...

The external validity of machine learning-based prediction scores from hematological parameters of COVID-19: A study using hospital records from Brazil, Italy, and Western Europe.

PloS one
The unprecedented worldwide pandemic caused by COVID-19 has motivated several research groups to develop machine-learning based approaches that aim to automate the diagnosis or screening of COVID-19, in large-scale. The gold standard for COVID-19 det...

Leveraging natural language processing to enhance feedback-informed group therapy: A proof of concept.

Psychotherapy (Chicago, Ill.)
Group therapy has evolved as a powerful therapeutic approach, facilitating mutual support, interpersonal learning, and personal growth among members. However, the complexity of studying communication dynamics, emotional expressions, and group interac...

Development of an artificial intelligence-based measure of therapists' skills: A multimodal proof of concept.

Psychotherapy (Chicago, Ill.)
The facilitative interpersonal skills (FIS) task is a performance-based task designed to assess clinicians' capacity for facilitating a collaborative relationship. Performance on FIS is a robust clinician-level predictor of treatment outcomes. Howeve...

Diagnostic Value of Median Nerve Cross-sectional Area Measured by Ultrasonography for the Severity of Carpal Tunnel Syndrome: A Machine Learning-Based Approach.

American journal of physical medicine & rehabilitation
OBJECTIVE: This study was conducted to evaluate the diagnostic performance and to establish cutoff values of median nerve cross-sectional area for classifying the severity of carpal tunnel syndrome.