Stroke is a major threat to life and health in modern society, especially in the aging population. Stroke may cause sudden death or severe sequela-like hemiplegia. Although computed tomography (CT) and magnetic resonance imaging (MRI) are standard di...
This study aims to investigate the predictive occupant demographic characteristics of thermal sensation (TS) and thermal satisfaction (TSa) as well as to find the most effective machine learning (ML) algorithms for predicting TS and TSa. To achieve t...
BACKGROUND: Accurately distinguishing between malignant and benign thyroid nodules through fine-needle aspiration cytopathology is crucial for appropriate therapeutic intervention. However, cytopathologic diagnosis is time consuming and hindered by t...
In recent years, Artificial Intelligence has been used to assist healthcare professionals in detecting and diagnosing neurodegenerative diseases. In this study, we propose a methodology to analyze functional Magnetic Resonance Imaging signals and per...
BACKGROUND: This study aims to explore machine learning(ML) methods for non-invasive assessment of WHO/ISUP nuclear grading in clear cell renal cell carcinoma(ccRCC) using contrast-enhanced ultrasound(CEUS) radiomics.
Diabetic retinopathy (DR) is one of the leading causes of adult blindness in the United States. Although studies applying traditional statistical methods have revealed that heavy metals may be essential environmental risk factors for diabetic retinop...
BACKGROUND: Contrast-enhanced CT scans provide a means to detect unsuspected colorectal cancer. However, colorectal cancers in contrast-enhanced CT without bowel preparation may elude detection by radiologists. We aimed to develop a deep learning (DL...
IEEE journal of biomedical and health informatics
Jun 6, 2024
Alzheimer's disease (AD) is a neurodegenerative disorder that can cause a significant impairment in physical and cognitive functions. Gait disturbances are also reported as a symptom of AD. Previous works have used Convolutional Neural Networks (CNNs...
OBJECTIVES: Opioid nonadherence represents a significant barrier to cancer pain treatment efficacy. However, there is currently no effective prediction method for opioid adherence in patients with cancer pain. We aimed to develop and validate a machi...
Journal of imaging informatics in medicine
Jun 5, 2024
Accurate prediction of pneumoconiosis is essential for individualized early prevention and treatment. However, the different manifestations and high heterogeneity among radiologists make it difficult to diagnose and stage pneumoconiosis accurately. H...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.