AIMC Topic: Animals

Clear Filters Showing 941 to 950 of 8235 articles

A mechanism-informed deep neural network enables prioritization of regulators that drive cell state transitions.

Nature communications
Cells are regulated at multiple levels, from regulations of individual genes to interactions across multiple genes. Some recent neural network models can connect molecular changes to cellular phenotypes, but their design lacks modeling of regulatory ...

Fundus camera-based precision monitoring of blood vitamin A level for Wagyu cattle using deep learning.

Scientific reports
In the wagyu industry worldwide, high-quality marbling beef is produced by promoting intramuscular fat deposition during cattle fattening stage through dietary vitamin A control. Thus, however, cattle become susceptible to either vitamin A deficiency...

Accelerating biopharmaceutical cell line selection with label-free multimodal nonlinear optical microscopy and machine learning.

Communications biology
The selection of high-performing cell lines is crucial for biopharmaceutical production but is often time-consuming and labor-intensive. We investigated label-free multimodal nonlinear optical microscopy for non-perturbative profiling of biopharmaceu...

A machine learning driven computationally efficient horse shoe shaped antenna design for internet of medical things.

PloS one
With bio-medical wearables becoming an essential part of Internet of Medical things (IoMT) for monitoring the health of workers, patients and others in different environments, antenna play a pivotal role in such wearables. In this communication, a no...

Evaluating the synergistic use of advanced liver models and AI for the prediction of drug-induced liver injury.

Expert opinion on drug metabolism & toxicology
INTRODUCTION: Drug-induced liver injury (DILI) is a leading cause of acute liver failure. Hepatotoxicity typically occurs only in a subset of individuals after prolonged exposure and constitutes a major risk factor for the termination of drug develop...

Hybrid neural networks for continual learning inspired by corticohippocampal circuits.

Nature communications
Current artificial systems suffer from catastrophic forgetting during continual learning, a limitation absent in biological systems. Biological mechanisms leverage the dual representation of specific and generalized memories within corticohippocampal...

Identifying bee species origins of Philippine honey using X-ray fluorescence elemental analysis coupled with machine learning.

Food chemistry
Stingless bee honey is emerging as a superfood, given its enhanced health and therapeutic benefits. In this paper, we used handheld X-ray fluorescence spectroscopy (hXRF) with machine learning techniques to classify Philippine honey based on its ento...

Deep learning assisted prediction of osteogenic capability of orthopedic implant surfaces based on early cell morphology.

Acta biomaterialia
The surface modification of titanium (Ti) and its alloys is crucial for improving their osteogenic capability, as their bio-inert nature limits effective osseointegration despite their prevalent use in orthopedic implants. However, these modification...

Temporal pavlovian conditioning of a model spiking neural network for discrimination sequences of short time intervals.

Journal of computational neuroscience
The brain's ability to learn and distinguish rapid sequences of events is essential for timing-dependent tasks, such as those in sports and music. However, the mechanisms underlying this ability remain an active area of research. Here, we present a P...

Automated and explainable machine learning for monitoring lipid and protein oxidative damage in mutton using hyperspectral imaging.

Food research international (Ottawa, Ont.)
Current detection methods for lipid and protein oxidation using hyperspectral imaging (HSI) in conjunction with machine learning (ML) necessitate the involvement of data scientists and domain experts to adjust the model architecture and tune hyperpar...