AIMC Topic: Autonomic Nervous System

Clear Filters Showing 11 to 20 of 29 articles

Towards a Contactless Stress Classification Using Thermal Imaging.

Sensors (Basel, Switzerland)
Thermal cameras capture the infrared radiation emitted from a body in a contactless manner and can provide an indirect estimation of the autonomic nervous system (ANS) dynamics through the regulation of the skin temperature. This study investigates t...

Human and Human-Interfaced AI Interactions: Modulation of Human Male Autonomic Nervous System via Pupil Mimicry.

Sensors (Basel, Switzerland)
Pupillary alterations in virtual humans induce neurophysiological responses within an observer. Technological advances have enabled rapid developments in artificial intelligence (AI), from verbal systems, to visual AI interfaces with the ability to e...

Screening of sleep apnea based on heart rate variability and long short-term memory.

Sleep & breathing = Schlaf & Atmung
PURPOSE: Sleep apnea syndrome (SAS) is a prevalent sleep disorder in which apnea and hypopnea occur frequently during sleep and result in increase of the risk of lifestyle-related disease development as well as daytime sleepiness. Although SAS is a c...

Prognostic factors of Rapid symptoms progression in patients with newly diagnosed parkinson's disease.

Artificial intelligence in medicine
Tracking symptoms progression in the early stages of Parkinson's disease (PD) is a laborious endeavor as the disease can be expressed with vastly different phenotypes, forcing clinicians to follow a multi-parametric approach in patient evaluation, lo...

Mild Dehydration Identification Using Machine Learning to Assess Autonomic Responses to Cognitive Stress.

Nutrients
The feasibility of detecting mild dehydration by using autonomic responses to cognitive stress was studied. To induce cognitive stress, subjects ( = 17) performed the Stroop task, which comprised four minutes of rest and four minutes of test. Nine in...

Physiological indices of challenge and threat: A data-driven investigation of autonomic nervous system reactivity during an active coping stressor task.

Psychophysiology
We utilized a data-driven, unsupervised machine learning approach to examine patterns of peripheral physiological responses during a motivated performance context across two large, independent data sets, each with multiple peripheral physiological me...

Deep multiphysics: Coupling discrete multiphysics with machine learning to attain self-learning in-silico models replicating human physiology.

Artificial intelligence in medicine
OBJECTIVES: The objective of this study is to devise a modelling strategy for attaining in-silico models replicating human physiology and, in particular, the activity of the autonomic nervous system.

Functional brain networks and neuroanatomy underpinning nausea severity can predict nausea susceptibility using machine learning.

The Journal of physiology
KEY POINTS: Nausea is an adverse experience characterised by alterations in autonomic and cerebral function. Susceptibility to nausea is difficult to predict, but machine learning has yet to be applied to this field of study. The severity of nausea t...

Depression recognition according to heart rate variability using Bayesian Networks.

Journal of psychiatric research
BACKGROUND: Doctors mainly use scale tests and subjective judgment in the clinical diagnosis of depression. Researches have demonstrated that depression is associated with the dysfunction of the autonomic nervous system (ANS), where its modulation ca...

Sleep stage classification with ECG and respiratory effort.

Physiological measurement
Automatic sleep stage classification with cardiorespiratory signals has attracted increasing attention. In contrast to the traditional manual scoring based on polysomnography, these signals can be measured using advanced unobtrusive techniques that a...