AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Base Sequence

Showing 41 to 50 of 171 articles

Clear Filters

T Cell Epitope Prediction and Its Application to Immunotherapy.

Frontiers in immunology
T cells play a crucial role in controlling and driving the immune response with their ability to discriminate peptides derived from healthy as well as pathogenic proteins. In this review, we focus on the currently available computational tools for ep...

Chromatin interaction neural network (ChINN): a machine learning-based method for predicting chromatin interactions from DNA sequences.

Genome biology
Chromatin interactions play important roles in regulating gene expression. However, the availability of genome-wide chromatin interaction data is limited. We develop a computational method, chromatin interaction neural network (ChINN), to predict chr...

Optimization of C-to-G base editors with sequence context preference predictable by machine learning methods.

Nature communications
Efficient and precise base editors (BEs) for C-to-G transversion are highly desirable. However, the sequence context affecting editing outcome largely remains unclear. Here we report engineered C-to-G BEs of high efficiency and fidelity, with the seq...

NanoCaller for accurate detection of SNPs and indels in difficult-to-map regions from long-read sequencing by haplotype-aware deep neural networks.

Genome biology
Long-read sequencing enables variant detection in genomic regions that are considered difficult-to-map by short-read sequencing. To fully exploit the benefits of longer reads, here we present a deep learning method NanoCaller, which detects SNPs usin...

Using k-mer embeddings learned from a Skip-gram based neural network for building a cross-species DNA N6-methyladenine site prediction model.

Plant molecular biology
This study used k-mer embeddings as effective feature to identify DNA N6-Methyladenine sites in plant genomes and obtained improved performance without substantial effort in feature extraction, combination and selection. Identification of DNA N6-meth...

Prediction of RBP binding sites on circRNAs using an LSTM-based deep sequence learning architecture.

Briefings in bioinformatics
Circular RNAs (circRNAs) are widely expressed in highly diverged eukaryotes. Although circRNAs have been known for many years, their function remains unclear. Interaction with RNA-binding protein (RBP) to influence post-transcriptional regulation is ...

DeLUCS: Deep learning for unsupervised clustering of DNA sequences.

PloS one
We present a novel Deep Learning method for the Unsupervised Clustering of DNA Sequences (DeLUCS) that does not require sequence alignment, sequence homology, or (taxonomic) identifiers. DeLUCS uses Frequency Chaos Game Representations (FCGR) of prim...

NmRF: identification of multispecies RNA 2'-O-methylation modification sites from RNA sequences.

Briefings in bioinformatics
2'-O-methylation (Nm) is a post-transcriptional modification of RNA that is catalyzed by 2'-O-methyltransferase and involves replacing the H on the 2'-hydroxyl group with a methyl group. The 2'-O-methylation modification site is detected in a variety...

Assessing deep learning methods in cis-regulatory motif finding based on genomic sequencing data.

Briefings in bioinformatics
Identifying cis-regulatory motifs from genomic sequencing data (e.g. ChIP-seq and CLIP-seq) is crucial in identifying transcription factor (TF) binding sites and inferring gene regulatory mechanisms for any organism. Since 2015, deep learning (DL) me...

A brief review of machine learning methods for RNA methylation sites prediction.

Methods (San Diego, Calif.)
Thanks to the tremendous advancement of deep sequencing and large-scale profiling, epitranscriptomics has become a rapidly growing field. As one of the most important parts of epitranscriptomics, ribonucleic acid (RNA) methylation has been focused on...