AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Brain Injuries, Traumatic

Showing 11 to 20 of 111 articles

Clear Filters

Explainable machine learning for early prediction of sepsis in traumatic brain injury: A discovery and validation study.

PloS one
BACKGROUND: People with traumatic brain injury (TBI) are at high risk for infection and sepsis. The aim of the study was to develop and validate an explainable machine learning(ML) model based on clinical features for early prediction of the risk of ...

Development of a System for Predicting Hospitalization Time for Patients With Traumatic Brain Injury Based on Machine Learning Algorithms: User-Centered Design Case Study.

JMIR human factors
BACKGROUND: Currently, the treatment and care of patients with traumatic brain injury (TBI) are intractable health problems worldwide and greatly increase the medical burden in society. However, machine learning-based algorithms and the use of a larg...

Development of predictive model for the neurological deterioration among mild traumatic brain injury patients using machine learning algorithms.

Neurosurgical review
BACKGROUND: Mild traumatic brain injury (mTBI) comprises a majority of traumatic brain injury (TBI) cases. While some mTBI would suffer neurological deterioration (ND) and therefore have poorer prognosis. This study was designed to develop the predic...

Machine Learning Based Prediction of Imminent ICP Insults During Neurocritical Care of Traumatic Brain Injury.

Neurocritical care
BACKGROUND: In neurointensive care, increased intracranial pressure (ICP) is a feared secondary brain insult in traumatic brain injury (TBI). A system that predicts ICP insults before they emerge may facilitate early optimization of the physiology, w...

Latent Trajectories of Cerebral Perfusion Pressure and Risk Prediction Models Among Patients with Traumatic Brain Injury: Based on an Interpretable Artificial Neural Network.

World neurosurgery
OBJECTIVE: This study aimed to characterize long-term cerebral perfusion pressure (CPP) trajectory in traumatic brain injury (TBI) patients and construct an interpretable prediction model to assess the risk of unfavorable CPP evolution patterns.

Anatomic Interpretability in Neuroimage Deep Learning: Saliency Approaches for Typical Aging and Traumatic Brain Injury.

Neuroinformatics
The black box nature of deep neural networks (DNNs) makes researchers and clinicians hesitant to rely on their findings. Saliency maps can enhance DNN explainability by suggesting the anatomic localization of relevant brain features. This study compa...

Random Forest Prognostication of Survival and 6-Month Outcome in Pediatric Patients Following Decompressive Craniectomy for Traumatic Brain Injury.

World neurosurgery
BACKGROUND: There is a dearth of literature regarding prognostic and predictive factors for outcome following pediatric decompressive craniectomy (DC) performed after traumatic brain injury (TBI). The aim of this study was to develop a random forest ...

Prediction of Post Traumatic Epilepsy Using MR-Based Imaging Markers.

Human brain mapping
Post-traumatic epilepsy (PTE) is a debilitating neurological disorder that develops after traumatic brain injury (TBI). Despite the high prevalence of PTE, current methods for predicting its occurrence remain limited. In this study, we aimed to ident...