BACKGROUND: People with traumatic brain injury (TBI) are at high risk for infection and sepsis. The aim of the study was to develop and validate an explainable machine learning(ML) model based on clinical features for early prediction of the risk of ...
BACKGROUND: Currently, the treatment and care of patients with traumatic brain injury (TBI) are intractable health problems worldwide and greatly increase the medical burden in society. However, machine learning-based algorithms and the use of a larg...
BACKGROUND: Mild traumatic brain injury (mTBI) comprises a majority of traumatic brain injury (TBI) cases. While some mTBI would suffer neurological deterioration (ND) and therefore have poorer prognosis. This study was designed to develop the predic...
BACKGROUND: In neurointensive care, increased intracranial pressure (ICP) is a feared secondary brain insult in traumatic brain injury (TBI). A system that predicts ICP insults before they emerge may facilitate early optimization of the physiology, w...
OBJECTIVE: This study aimed to characterize long-term cerebral perfusion pressure (CPP) trajectory in traumatic brain injury (TBI) patients and construct an interpretable prediction model to assess the risk of unfavorable CPP evolution patterns.
The black box nature of deep neural networks (DNNs) makes researchers and clinicians hesitant to rely on their findings. Saliency maps can enhance DNN explainability by suggesting the anatomic localization of relevant brain features. This study compa...
BACKGROUND: There is a dearth of literature regarding prognostic and predictive factors for outcome following pediatric decompressive craniectomy (DC) performed after traumatic brain injury (TBI). The aim of this study was to develop a random forest ...
Post-traumatic epilepsy (PTE) is a debilitating neurological disorder that develops after traumatic brain injury (TBI). Despite the high prevalence of PTE, current methods for predicting its occurrence remain limited. In this study, we aimed to ident...