AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Brain Neoplasms

Showing 141 to 150 of 1009 articles

Clear Filters

Validation of SynthSeg segmentation performance on CT using paired MRI from radiotherapy patients.

NeuroImage
INTRODUCTION: Manual segmentation of medical images is labor intensive and especially challenging for images with poor contrast or resolution. The presence of disease exacerbates this further, increasing the need for an automated solution. To this ex...

Improving Deep Learning Models for Pediatric Low-Grade Glioma Tumours Molecular Subtype Identification Using MRI-based 3D Probability Distributions of Tumour Location.

Canadian Association of Radiologists journal = Journal l'Association canadienne des radiologistes
Pediatric low-grade gliomas (pLGG) are the most common brain tumour in children, and the molecular diagnosis of pLGG enables targeted treatment. We use MRI-based Convolutional Neural Networks (CNNs) for molecular subtype identification of pLGG and a...

AI tool for predicting MGMT methylation in glioblastoma for clinical decision support in resource limited settings.

Scientific reports
Glioblastoma is an aggressive brain cancer with a poor prognosis. The O6-methylguanine-DNA methyltransferase (MGMT) gene methylation status is crucial for treatment stratification, yet economic constraints often limit access. This study aims to devel...

Brain tumor diagnosis in MRI scans images using Residual/Shuffle Network optimized by augmented Falcon Finch optimization.

Scientific reports
Brain tumor diagnosis is an important task in prognosing and treatment planning of the patients with brain cancer. in the meantime, using the Magnetic Resonance Imaging (MRI) as a commonly used non-invasive imaging technique provide the experts a hel...

Machine learning model reveals the role of angiogenesis and EMT genes in glioma patient prognosis and immunotherapy.

Biology direct
Gliomas represent a highly aggressive class of tumors located in the brain. Despite the availability of multiple treatment modalities, the prognosis for patients diagnosed with glioma remains unfavorable. Therefore, further exploration of new biomark...

Discovery of key molecular signatures for diagnosis and therapies of glioblastoma by combining supervised and unsupervised learning approaches.

Scientific reports
Glioblastoma (GBM) is the most malignant brain cancer and one of the leading causes of cancer-related death globally. So, identifying potential molecular signatures and associated drug molecules are crucial for diagnosis and therapies of GBM. This st...

Postoperative Karnofsky performance status prediction in patients with IDH wild-type glioblastoma: A multimodal approach integrating clinical and deep imaging features.

PloS one
BACKGROUND AND PURPOSE: Glioblastoma is a highly aggressive brain tumor with limited survival that poses challenges in predicting patient outcomes. The Karnofsky Performance Status (KPS) score is a valuable tool for assessing patient functionality an...

Deep learning based apparent diffusion coefficient map generation from multi-parametric MR images for patients with diffuse gliomas.

Medical physics
PURPOSE: Apparent diffusion coefficient (ADC) maps derived from diffusion weighted magnetic resonance imaging (DWI MRI) provides functional measurements about the water molecules in tissues. However, DWI is time consuming and very susceptible to imag...

Segmentation and classification of brain tumor using Taylor fire hawk optimization enabled deep learning approach.

Electromagnetic biology and medicine
The brain is a crucial organ that controls the body's neural system. The tumor develops and spreads across the brain as a result of irregular cell generation. The provision of substantial treatment to patients requires the early diagnosis of malignan...

The Segment Anything foundation model achieves favorable brain tumor auto-segmentation accuracy in MRI to support radiotherapy treatment planning.

Strahlentherapie und Onkologie : Organ der Deutschen Rontgengesellschaft ... [et al]
BACKGROUND: Promptable foundation auto-segmentation models like Segment Anything (SA, Meta AI, New York, USA) represent a novel class of universal deep learning auto-segmentation models that could be employed for interactive tumor auto-contouring in ...