AIMC Topic: Brain

Clear Filters Showing 921 to 930 of 4188 articles

Analysis of Cerebral CT Based on Supervised Machine Learning as a Predictor of Outcome After Out-of-Hospital Cardiac Arrest.

Neurology
BACKGROUND AND OBJECTIVES: In light of limited intensive care capacities and a lack of accurate prognostic tools to advise caregivers and family members responsibly, this study aims to determine whether automated cerebral CT (CCT) analysis allows pro...

Recovering high-quality fiber orientation distributions from a reduced number of diffusion-weighted images using a model-driven deep learning architecture.

Magnetic resonance in medicine
PURPOSE: The aim of this study was to develop a model-based deep learning architecture to accurately reconstruct fiber orientation distributions (FODs) from a reduced number of diffusion-weighted images (DWIs), facilitating accurate analysis with red...

Enhanced parameter estimation in multiparametric arterial spin labeling using artificial neural networks.

Magnetic resonance in medicine
PURPOSE: Multiparametric arterial spin labeling (MP-ASL) can quantify cerebral blood flow (CBF) and arterial cerebral blood volume (CBV). However, its accuracy is compromised owing to its intrinsically low SNR, necessitating complex and time-consumin...

An end-to-end multi-task motor imagery EEG classification neural network based on dynamic fusion of spectral-temporal features.

Computers in biology and medicine
Electroencephalograph (EEG) brain-computer interfaces (BCI) have potential to provide new paradigms for controlling computers and devices. The accuracy of brain pattern classification in EEG BCI is directly affected by the quality of features extract...

Bayesian Tensor Modeling for Image-based Classification of Alzheimer's Disease.

Neuroinformatics
Tensor-based representations are being increasingly used to represent complex data types such as imaging data, due to their appealing properties such as dimension reduction and the preservation of spatial information. Recently, there is a growing lit...

Gray matters: ViT-GAN framework for identifying schizophrenia biomarkers linking structural MRI and functional network connectivity.

NeuroImage
Brain disorders are often associated with changes in brain structure and function, where functional changes may be due to underlying structural variations. Gray matter (GM) volume segmentation from 3D structural MRI offers vital structural informatio...

Artificial Intelligence for Automatic Analysis of Shunt Treatment in Presurgery and Postsurgery Computed Tomography Brain Scans of Patients With Idiopathic Normal Pressure Hydrocephalus.

Neurosurgery
BACKGROUND AND OBJECTIVES: Ventriculo-peritoneal shunt procedures can improve idiopathic normal pressure hydrocephalus (iNPH) symptoms. However, there are no automated methods that quantify the presurgery and postsurgery changes in the ventricular vo...

Deep learning-based low-dose CT simulator for non-linear reconstruction methods.

Medical physics
BACKGROUND: Computer algorithms that simulate lower-doses computed tomography (CT) images from clinical-dose images are widely available. However, most operate in the projection domain and assume access to the reconstruction method. Access to commerc...

Exploring the potential of representation and transfer learning for anatomical neuroimaging: Application to psychiatry.

NeuroImage
The perspective of personalized medicine for brain disorders requires efficient learning models for anatomical neuroimaging-based prediction of clinical conditions. There is now a consensus on the benefit of deep learning (DL) in addressing many medi...

Causal Forest Machine Learning Analysis of Parkinson's Disease in Resting-State Functional Magnetic Resonance Imaging.

Tomography (Ann Arbor, Mich.)
In recent years, Artificial Intelligence has been used to assist healthcare professionals in detecting and diagnosing neurodegenerative diseases. In this study, we propose a methodology to analyze functional Magnetic Resonance Imaging signals and per...