The objective of the study was to use a deep learning model to differentiate between benign and malignant sentinel lymph nodes (SLNs) in patients with breast cancer compared to radiologists' assessments.Seventy-nine women with breast cancer were enro...
As the primary component of anti-tumor immunity, T cells are prone to exhaustion and dysfunction in the tumor microenvironment (TME). A thorough understanding of T cell exhaustion (TEX) in the TME is crucial for effectively addressing TEX in clinical...
The clustering of death receptors (DRs) at the membrane leads to apoptosis. With the goal of treating tumours, multivalent molecular tools that initiate this mechanism have been developed. However, DRs are also ubiquitously expressed in healthy tissu...
Breast cancer is the most commonly diagnosed cancer among women worldwide. Breast cancer patients experience significant distress relating to their diagnosis and treatment. Managing this distress is critical for improving the lifespan and quality of ...
OBJECTIVE: The study aimed to develop natural language processing (NLP) algorithms to automate extracting patient-centred breast cancer treatment outcomes from clinical notes in electronic health records (EHRs), particularly for women from under-repr...
Deep learning (DL) has proven highly effective for ultrasound-based computer-aided diagnosis (CAD) of breast cancers. In an automatic CAD system, lesion detection is critical for the following diagnosis. However, existing DL-based methods generally r...
Pathologists' assessment of sentinel lymph nodes (SNs) for breast cancer (BC) metastases is a treatment-guiding yet labor-intensive and costly task because of the performance of immunohistochemistry (IHC) in morphologically negative cases. This non-r...
Journal of imaging informatics in medicine
Jun 26, 2024
Breast cancer is the most common cancer in women. Ultrasound is one of the most used techniques for diagnosis, but an expert in the field is necessary to interpret the test. Computer-aided diagnosis (CAD) systems aim to help physicians during this pr...
PURPOSE: The molecular classification of breast cancer is crucial for effective treatment. The emergence of digital pathology has ushered in a new era in which weakly supervised learning leveraging whole-slide images has gained prominence in developi...