In this work, a computer-aided tool for detection was developed to segment breast masses from clinical ultrasound (US) scans. The underlying Multi U-net algorithm is based on convolutional neural networks. Under the Mayo Clinic Institutional Review B...
OBJECTIVES: In the postneoadjuvant chemotherapy (NAC) setting, conventional radiographic complete response (rCR) is a poor predictor of pathologic complete response (pCR) of the axilla. We developed a convolutional neural network (CNN) algorithm to b...
Journal of magnetic resonance imaging : JMRI
30129697
BACKGROUND: Oncotype Dx is a validated genetic analysis that provides a recurrence score (RS) to quantitatively predict outcomes in patients who meet the criteria of estrogen receptor positive / human epidermal growth factor receptor-2 negative (ER+/...
In breast cancer, 20%-30% of cases require a second surgery because of incomplete excision of malignant tissues. Therefore, to avoid the risk of recurrence, accurate detection of the cancer margin by the clinician or surgeons needs some assistance. I...
PURPOSE: To determine whether deep learning-based algorithms applied to breast MR images can aid in the prediction of occult invasive disease following the diagnosis of ductal carcinoma in situ (DCIS) by core needle biopsy.
BACKGROUND: Distinguishing ductal carcinoma in situ (DCIS) from invasive ductal carcinoma (IDC) regions in clinical biopsies constitutes a diagnostic challenge. Spatial transcriptomics (ST) is an in situ capturing method, which allows quantification ...