AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Cluster Analysis

Showing 121 to 130 of 1323 articles

Clear Filters

Joint inference of discrete cell types and continuous type-specific variability in single-cell datasets with MMIDAS.

Nature computational science
Reproducible definition and identification of cell types is essential to enable investigations into their biological function and to understand their relevance in the context of development, disease and evolution. Current approaches model variability...

Characterizing daily physical activity patterns with unsupervised learning via functional mixture models.

Journal of behavioral medicine
Physical inactivity is a significant public health concern. Consideration of inter-individual variations in physical activity (PA) trends can provide additional information about the groups under study to aid intervention design. This study aims to i...

Investigating Older Adults' Use of a Socially Assistive Robot via Time Series Clustering and User Profiling: Descriptive Analysis Study.

JMIR formative research
BACKGROUND: The aging population and the shortage of geriatric care workers are major global concerns. Socially assistive robots (SARs) have the potential to address these issues, but developing SARs for various types of users is still in its infancy...

Geographic inequities in neonatal survival in Nigeria: a cross-sectional evidence from spatial and artificial neural network analyses.

Journal of biosocial science
This study was conducted to provide empirical evidence of geographical variations of neonatal mortality and its associated social determinants with a view to improving neonatal survival at the subnational level in Nigeria. With a combination of spati...

Effective Phoneme Decoding With Hyperbolic Neural Networks for High-Performance Speech BCIs.

IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society
OBJECTIVE: Speech brain-computer interfaces (speech BCIs), which convert brain signals into spoken words or sentences, have demonstrated great potential for high-performance BCI communication. Phonemes are the basic pronunciation units. For monosylla...

Unsupervised Machine Learning to Identify Risk Factors of Pyeloplasty Failure in Ureteropelvic Junction Obstruction.

Journal of endourology
In adult patients with ureteropelvic junction obstruction (UPJO), little data exist on predicting pyeloplasty outcome, and there is no unified definition of pyeloplasty success. As such, defining pyeloplasty success retrospectively is particularly v...

Construction of a molecular diagnostic system for neurogenic rosacea by combining transcriptome sequencing and machine learning.

BMC medical genomics
Patients with neurogenic rosacea (NR) frequently demonstrate pronounced neurological manifestations, often unresponsive to conventional therapeutic approaches. A molecular-level understanding and diagnosis of this patient cohort could significantly g...

Global Suicide Mortality Rates (2000-2019): Clustering, Themes, and Causes Analyzed through Machine Learning and Bibliographic Data.

International journal of environmental research and public health
Suicide research is directed at understanding social, economic, and biological causes of suicide thoughts and behaviors. (1) Background: Worldwide, certain countries have high suicide mortality rates (SMRs) compared to others. Age-standardized suicid...

Integrating large-scale single-cell RNA sequencing in central nervous system disease using self-supervised contrastive learning.

Communications biology
The central nervous system (CNS) comprises a diverse range of brain cell types with distinct functions and gene expression profiles. Although single-cell RNA sequencing (scRNA-seq) provides new insights into the brain cell atlases, integrating large-...

A Contrastive-Learning-Based Deep Neural Network for Cancer Subtyping by Integrating Multi-Omics Data.

Interdisciplinary sciences, computational life sciences
BACKGROUND: Accurate identification of cancer subtypes is crucial for disease prognosis evaluation and personalized patient management. Recent advances in computational methods have demonstrated that multi-omics data provides valuable insights into t...