AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Cohort Studies

Showing 121 to 130 of 1109 articles

Clear Filters

Generation of a virtual cohort of TAVI patients for in silico trials: a statistical shape and machine learning analysis.

Medical & biological engineering & computing
PURPOSE: In silico trials using computational modeling and simulations can complement clinical trials to improve the time-to-market of complex cardiovascular devices in humans. This study aims to investigate the significance of synthetic data in deve...

A machine learning approach in a monocentric cohort for predicting primary refractory disease in Diffuse Large B-cell lymphoma patients.

PloS one
INTRODUCTION: Primary refractory disease affects 30-40% of patients diagnosed with DLBCL and is a significant challenge in disease management due to its poor prognosis. Predicting refractory status could greatly inform treatment strategies, enabling ...

Application of a deep-learning marker for morbidity and mortality prediction derived from retinal photographs: a cohort development and validation study.

The lancet. Healthy longevity
BACKGROUND: Biological ageing markers are useful to risk stratify morbidity and mortality more precisely than chronological age. In this study, we aimed to develop a novel deep-learning-based biological ageing marker (referred to as RetiPhenoAge here...

Predicting diabetes in adults: identifying important features in unbalanced data over a 5-year cohort study using machine learning algorithm.

BMC medical research methodology
BACKGROUND: Imbalanced datasets pose significant challenges in predictive modeling, leading to biased outcomes and reduced model reliability. This study addresses data imbalance in diabetes prediction using machine learning techniques. Utilizing data...

Interpretable machine learning models for the prediction of all-cause mortality and time to death in hemodialysis patients.

Therapeutic apheresis and dialysis : official peer-reviewed journal of the International Society for Apheresis, the Japanese Society for Apheresis, the Japanese Society for Dialysis Therapy
INTRODUCTION: The elevated mortality and hospitalization rates among hemodialysis (HD) patients underscore the necessity for the development of accurate predictive tools. This study developed two models for predicting all-cause mortality and time to ...

Identifying Potential Factors Associated With Racial Disparities in COVID-19 Outcomes: Retrospective Cohort Study Using Machine Learning on Real-World Data.

JMIR public health and surveillance
BACKGROUND: Racial disparities in COVID-19 incidence and outcomes have been widely reported. Non-Hispanic Black patients endured worse outcomes disproportionately compared with non-Hispanic White patients, but the epidemiological basis for these obse...

Maternal dietary practices during pregnancy and obesity of neonates: a machine learning approach towards hierarchical and nested relationships in a Tibet Plateau cohort study.

The British journal of nutrition
Studies on obesity and risk factors from a life-course perspective among residents in the Tibet Plateau with recent economic growth and increasing obesity are important and urgently needed. The birth cohort in this area provides a unique opportunity ...

Crowd-sourced machine learning prediction of long COVID using data from the National COVID Cohort Collaborative.

EBioMedicine
BACKGROUND: While many patients seem to recover from SARS-CoV-2 infections, many patients report experiencing SARS-CoV-2 symptoms for weeks or months after their acute COVID-19 ends, even developing new symptoms weeks after infection. These long-term...