AIMC Topic: Colonic Polyps

Clear Filters Showing 101 to 110 of 171 articles

A comparative study on polyp classification using convolutional neural networks.

PloS one
Colorectal cancer is the third most common cancer diagnosed in both men and women in the United States. Most colorectal cancers start as a growth on the inner lining of the colon or rectum, called 'polyp'. Not all polyps are cancerous, but some can d...

Lower Adenoma Miss Rate of Computer-Aided Detection-Assisted Colonoscopy vs Routine White-Light Colonoscopy in a Prospective Tandem Study.

Gastroenterology
BACKGROUND AND AIMS: Up to 30% of adenomas might be missed during screening colonoscopy-these could be polyps that appear on-screen but are not recognized by endoscopists or polyps that are in locations that do not appear on the screen at all. Comput...

Utilizing artificial intelligence in endoscopy: a clinician's guide.

Expert review of gastroenterology & hepatology
INTRODUCTION: Artificial intelligence (AI) that surpasses human ability in image recognition is expected to be applied in the field of gastrointestinal endoscopes. Accordingly, its research and development (R &D) is being actively conducted. With the...

Polyp detection algorithm can detect small polyps: Ex vivo reading test compared with endoscopists.

Digestive endoscopy : official journal of the Japan Gastroenterological Endoscopy Society
BACKGROUND AND STUDY AIMS: Small polyps are occasionally missed during colonoscopy. This study was conducted to validate the diagnostic performance of a polyp-detection algorithm to alert endoscopists to unrecognized lesions.

The impact of deep convolutional neural network-based artificial intelligence on colonoscopy outcomes: A systematic review with meta-analysis.

Journal of gastroenterology and hepatology
BACKGROUND AND AIM: The utility of artificial intelligence (AI) in colonoscopy has gained popularity in current times. Recent trials have evaluated the efficacy of deep convolutional neural network (DCNN)-based AI system in colonoscopy for improving ...

Evaluation of a Deep Neural Network for Automated Classification of Colorectal Polyps on Histopathologic Slides.

JAMA network open
IMPORTANCE: Histologic classification of colorectal polyps plays a critical role in screening for colorectal cancer and care of affected patients. An accurate and automated algorithm for the classification of colorectal polyps on digitized histopatho...

Improved Accuracy in Optical Diagnosis of Colorectal Polyps Using Convolutional Neural Networks with Visual Explanations.

Gastroenterology
BACKGROUND & AIMS: Narrow-band imaging (NBI) can be used to determine whether colorectal polyps are adenomatous or hyperplastic. We investigated whether an artificial intelligence (AI) system can increase the accuracy of characterizations of polyps b...

Polyp fingerprint: automatic recognition of colorectal polyps' unique features.

Surgical endoscopy
BACKGROUND: Content-based image retrieval (CBIR) is an application of machine learning used to retrieve images by similarity on the basis of features. Our objective was to develop a CBIR system that could identify images containing the same polyp ('p...

Effect of a deep-learning computer-aided detection system on adenoma detection during colonoscopy (CADe-DB trial): a double-blind randomised study.

The lancet. Gastroenterology & hepatology
BACKGROUND: Colonoscopy with computer-aided detection (CADe) has been shown in non-blinded trials to improve detection of colon polyps and adenomas by providing visual alarms during the procedure. We aimed to assess the effectiveness of a CADe system...

Endoscopic diagnosis and treatment planning for colorectal polyps using a deep-learning model.

Scientific reports
We aimed to develop a computer-aided diagnostic system (CAD) for predicting colorectal polyp histology using deep-learning technology and to validate its performance. Near-focus narrow-band imaging (NBI) pictures of colorectal polyps were retrieved f...