AIMC Topic: Coronary Vessels

Clear Filters Showing 51 to 60 of 263 articles

The value of CCTA combined with machine learning for predicting angina pectoris in the anomalous origin of the right coronary artery.

Biomedical engineering online
BACKGROUND: Anomalous origin of coronary artery is a common coronary artery anatomy anomaly. The anomalous origin of the coronary artery may lead to problems such as narrowing of the coronary arteries at the beginning of the coronary arteries and abn...

Deep learning model for intravascular ultrasound image segmentation with temporal consistency.

The international journal of cardiovascular imaging
This study was conducted to develop and validate a deep learning model for delineating intravascular ultrasound (IVUS) images of coronary arteries.Using a total of 1240 40-MHz IVUS pullbacks with 191,407 frames, the model for lumen and external elast...

Effective descriptor extraction strategies for correspondence matching in coronary angiography images.

Scientific reports
The importance of 3D reconstruction of coronary arteries using multiple coronary angiography (CAG) images has been increasingly recognized in the field of cardiovascular disease management. This process relies on the camera matrix's optimization, nee...

Scale Mutualized Perception for Vessel Border Detection in Intravascular Ultrasound Images.

IEEE/ACM transactions on computational biology and bioinformatics
Vessel border detection in IVUS images is essential for coronary disease diagnosis. It helps to obtain the clinical indices on the inner vessel morphology to indicate the stenosis. However, the existing methods suffer the challenge of scale-dependent...

Improving cardiovascular risk prediction with machine learning: a focus on perivascular adipose tissue characteristics.

Biomedical engineering online
BACKGROUND: Timely prevention of major adverse cardiovascular events (MACEs) is imperative for reducing cardiovascular diseases-related mortality. Perivascular adipose tissue (PVAT), the adipose tissue surrounding coronary arteries, has attracted inc...

Development of machine learning models for fractional flow reserve prediction in angiographically intermediate coronary lesions.

Catheterization and cardiovascular interventions : official journal of the Society for Cardiac Angiography & Interventions
BACKGROUND: Fractional flow reserve (FFR) represents the gold standard in guiding the decision to proceed or not with coronary revascularization of angiographically intermediate coronary lesion (AICL). Optical coherence tomography (OCT) allows to car...

Noninvasive and fast method of calculation for instantaneous wave-free ratio based on haemodynamics and deep learning.

Computer methods and programs in biomedicine
BACKGROUND AND OBJECTIVES: Instantaneous wave-free ratio (iFR) is a new invasive indicator of myocardial ischaemia, and its diagnostic performance is as good as the "gold standard" of myocardial ischaemia diagnosis: fractional flow reserve (FFR). iFR...

Bifurcation detection in intravascular optical coherence tomography using vision transformer based deep learning.

Physics in medicine and biology
. Bifurcation detection in intravascular optical coherence tomography (IVOCT) images plays a significant role in guiding optimal revascularization strategies for percutaneous coronary intervention (PCI). We propose a bifurcation detection method usin...

Development and Validation of Artificial Intelligence-Based Algorithms for Predicting the Segments Debulked by Rotational Atherectomy Using Intravascular Ultrasound Images.

The American journal of cardiology
We develop and evaluate an artificial intelligence (AI)-based algorithm that uses pre-rotation atherectomy (RA) intravascular ultrasound (IVUS) images to automatically predict regions debulked by RA. A total of 2106 IVUS cross-sections from 60 patien...