AIMC Topic: Deep Learning

Clear Filters Showing 1521 to 1530 of 26491 articles

AI-MET: A deep learning-based clinical decision support system for distinguishing multisystem inflammatory syndrome in children from endemic typhus.

Computers in biology and medicine
The COVID-19 pandemic brought several diagnostic challenges, including the post-infectious sequelae multisystem inflammatory syndrome in children (MIS-C). Some of the clinical features of this syndrome can be found in other pathologies such as Kawasa...

Deep Learning-Based Tumor Segmentation of Murine Magnetic Resonance Images of Prostate Cancer Patient-Derived Xenografts.

Tomography (Ann Arbor, Mich.)
BACKGROUND/OBJECTIVE: Longitudinal in vivo studies of murine xenograft models are widely utilized in oncology to study cancer biology and develop therapies. Magnetic resonance imaging (MRI) of these tumors is an invaluable tool for monitoring tumor g...

Content-Based Histopathological Image Retrieval.

Sensors (Basel, Switzerland)
Feature descriptors in histopathological images are an important challenge for the implementation of Content-Based Image Retrieval (CBIR) systems, an essential tool to support pathologists. Deep learning models like Convolutional Neural Networks and ...

Enhanced recognition and counting of high-coverage Amorphophallus konjac by integrating UAV RGB imagery and deep learning.

Scientific reports
Accurate counting of Amorphophallus konjac (Konjac) plants can offer valuable insights for agricultural management and yield prediction. While current studies have primarily focused on detecting and counting crop plants during the early stages of low...

Semi-supervised tissue segmentation from histopathological images with consistency regularization and uncertainty estimation.

Scientific reports
Pathologists have depended on their visual experience to assess tissue structures in smear images, which was time-consuming, error-prone, and inconsistent. Deep learning, particularly Convolutional Neural Networks (CNNs), offers the ability to automa...

A hybrid inception-dilated-ResNet architecture for deep learning-based prediction of COVID-19 severity.

Scientific reports
Chest computed tomography (CT) scans are essential for accurately assessing the severity of the novel Coronavirus (COVID-19), facilitating appropriate therapeutic interventions and monitoring disease progression. However, determining COVID-19 severit...

SVEA: an accurate model for structural variation detection using multi-channel image encoding and enhanced AlexNet architecture.

Journal of translational medicine
BACKGROUND: Structural variations (SVs) are a pervasive and impactful class of genetic variation within the genome, significantly influencing gene function, impacting human health, and contributing to disease. Recent advances in deep learning have sh...

Artificial intelligence assessment of tissue-dissection efficiency in laparoscopic colorectal surgery.

Langenbeck's archives of surgery
PURPOSE: Several surgical-skill assessment tools emphasize the importance of efficient tissue-dissection, whose assessment relies on human judgment and is thus subject to bias. Automated assessment may help solve this problem. This study aimed to ver...

Event-driven figure-ground organisation model for the humanoid robot iCub.

Nature communications
Figure-ground organisation is a perceptual grouping mechanism for detecting objects and boundaries, essential for an agent interacting with the environment. Current figure-ground segmentation methods rely on classical computer vision or deep learning...

AI-augmented Biophysical modeling in thermoplasmonics for real-time monitoring and diagnosis of human tissue infections.

Journal of thermal biology
Identifying tissue infections from the body still poses an unprecedented challenge in society. Conventional diagnostic procedures are time-consuming and lack a real-time monitoring mode. This study proposes a system with an Artificial Intelligence (A...