AIMC Topic: Diffusion Magnetic Resonance Imaging

Clear Filters Showing 201 to 210 of 338 articles

Learning to estimate the fiber orientation distribution function from diffusion-weighted MRI.

NeuroImage
Estimation of white matter fiber orientation distribution function (fODF) is the essential first step for reliable brain tractography and connectivity analysis. Most of the existing fODF estimation methods rely on sub-optimal physical models of the d...

Tissue outcome prediction in hyperacute ischemic stroke: Comparison of machine learning models.

Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism
Machine Learning (ML) has been proposed for tissue fate prediction after acute ischemic stroke (AIS), with the aim to help treatment decision and patient management. We compared three different ML models to the clinical method based on diffusion-perf...

Inter-vendor performance of deep learning in segmenting acute ischemic lesions on diffusion-weighted imaging: a multicenter study.

Scientific reports
There is little evidence on the applicability of deep learning (DL) in the segmentation of acute ischemic lesions on diffusion-weighted imaging (DWI) between magnetic resonance imaging (MRI) scanners of different manufacturers. We retrospectively inc...

Improved unsupervised physics-informed deep learning for intravoxel incoherent motion modeling and evaluation in pancreatic cancer patients.

Magnetic resonance in medicine
PURPOSE: Earlier work showed that IVIM-NET , an unsupervised physics-informed deep neural network, was faster and more accurate than other state-of-the-art intravoxel-incoherent motion (IVIM) fitting approaches to diffusion-weighted imaging (DWI). Th...

Magnetic resonance imaging reconstruction algorithm under complex convolutional neural network in diagnosis and prognosis of cerebral infarction.

PloS one
This study was to explore the application value of magnetic resonance imaging (MRI) image reconstruction model based on complex convolutional neural network (CCNN) in the diagnosis and prognosis of cerebral infarction. Two image reconstruction method...

Prediction of brain age from routine T2-weighted spin-echo brain magnetic resonance images with a deep convolutional neural network.

Neurobiology of aging
Our study investigated the feasibility and clinical relevance of brain age prediction using axial T2-weighted images (T2-WIs) with a deep convolutional neural network (CNN) algorithm. The CNN model was trained by 1,530 scans in our institution. The p...

Multimodal super-resolved q-space deep learning.

Medical image analysis
Super-resolvedq-space deep learning (SR-q-DL) has been developed to estimate high-resolution (HR) tissue microstructure maps from low-quality diffusion magnetic resonance imaging (dMRI) scans acquired with a reduced number of diffusion gradients and ...

Autosegmentation of Prostate Zones and Cancer Regions from Biparametric Magnetic Resonance Images by Using Deep-Learning-Based Neural Networks.

Sensors (Basel, Switzerland)
The accuracy in diagnosing prostate cancer (PCa) has increased with the development of multiparametric magnetic resonance imaging (mpMRI). Biparametric magnetic resonance imaging (bpMRI) was found to have a diagnostic accuracy comparable to mpMRI in ...

Longitudinal diffusion MRI analysis using Segis-Net: A single-step deep-learning framework for simultaneous segmentation and registration.

NeuroImage
This work presents a single-step deep-learning framework for longitudinal image analysis, coined Segis-Net. To optimally exploit information available in longitudinal data, this method concurrently learns a multi-class segmentation and nonlinear regi...

Detecting the Early Infarct Core on Non-Contrast CT Images with a Deep Learning Residual Network.

Journal of stroke and cerebrovascular diseases : the official journal of National Stroke Association
PURPOSE: To explore a new approach mainly based on deep learning residual network (ResNet) to detect infarct cores on non-contrast CT images and improve the accuracy of acute ischemic stroke diagnosis.