AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

DNA Methylation

Showing 51 to 60 of 213 articles

Clear Filters

Deep learning model integrating cfDNA methylation and fragment size profiles for lung cancer diagnosis.

Scientific reports
Detecting aberrant cell-free DNA (cfDNA) methylation is a promising strategy for lung cancer diagnosis. In this study, our aim is to identify methylation markers to distinguish patients with lung cancer from healthy individuals. Additionally, we soug...

Predicting type 2 diabetes via machine learning integration of multiple omics from human pancreatic islets.

Scientific reports
Type 2 diabetes (T2D) is the fastest growing non-infectious disease worldwide. Impaired insulin secretion from pancreatic beta-cells is a hallmark of T2D, but the mechanisms behind this defect are insufficiently characterized. Integrating multiple la...

A novel blood-based epigenetic biosignature in first-episode schizophrenia patients through automated machine learning.

Translational psychiatry
Schizophrenia (SCZ) is a chronic, severe, and complex psychiatric disorder that affects all aspects of personal functioning. While SCZ has a very strong biological component, there are still no objective diagnostic tests. Lately, special attention ha...

Machine learning and integrative multi-omics network analysis for survival prediction in acute myeloid leukemia.

Computers in biology and medicine
BACKGROUND: Acute myeloid leukemia (AML) is the most common malignant myeloid disorder in adults and the fifth most common malignancy in children, necessitating advanced technologies for outcome prediction.

Effective training of nanopore callers for epigenetic marks with limited labelled data.

Open biology
Nanopore sequencing platforms combined with supervised machine learning (ML) have been effective at detecting base modifications in DNA such as 5-methylcytosine (5mC) and N6-methyladenine (6mA). These ML-based nanopore callers have typically been tra...

Using a hybrid neural network architecture for DNA sequence representation: A study on N-methylcytosine sites.

Computers in biology and medicine
N-methylcytosine (4mC) is a modified form of cytosine found in DNA, contributing to epigenetic regulation. It exists in various genomes, including the Rosaceae family encompassing significant fruit crops like apples, cherries, and roses. Previous inv...

Prediction of DNA methylation-based tumor types from histopathology in central nervous system tumors with deep learning.

Nature medicine
Precision in the diagnosis of diverse central nervous system (CNS) tumor types is crucial for optimal treatment. DNA methylation profiles, which capture the methylation status of thousands of individual CpG sites, are state-of-the-art data-driven mea...

Machine learning unveils an immune-related DNA methylation profile in germline DNA from breast cancer patients.

Clinical epigenetics
BACKGROUND: There is an unmet need for precise biomarkers for early non-invasive breast cancer detection. Here, we aimed to identify blood-based DNA methylation biomarkers that are associated with breast cancer.

Deep learning and machine learning approaches to classify stomach distant metastatic tumors using DNA methylation profiles.

Computers in biology and medicine
Distant metastasis of cancer is a significant contributor to cancer-related complications, and early identification of unidentified stomach adenocarcinoma is crucial for a positive prognosis. Changes inDNA methylation are being increasingly recognize...

Inference of Developmental Hierarchy and Functional States of Exhausted T Cells from Epigenetic Profiles with Deep Learning.

Journal of chemical information and modeling
Exhausted T cells are a key component of immune cells that play a crucial role in the immune response against cancer and influence the efficacy of immunotherapy. Accurate assessment and measurement of T-cell exhaustion (TEX) are critical for understa...