AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Emergency Service, Hospital

Showing 61 to 70 of 435 articles

Clear Filters

Predicting paediatric asthma exacerbations with machine learning: a systematic review with meta-analysis.

European respiratory review : an official journal of the European Respiratory Society
BACKGROUND: Asthma exacerbations in children pose a significant burden on healthcare systems and families. While traditional risk assessment tools exist, artificial intelligence (AI) offers the potential for enhanced prediction models.

Using Deep Learning to Suggest Treatment for Proximal Humerus Fractures.

Studies in health technology and informatics
Proximal humeral fractures are among the most common fractures seen in emergency departments. Accurately diagnosing and selecting the most appropriate treatment for these fractures can be challenging, and consultation with a senior orthopedic surgeon...

Exploring ChatGPT's potential in ECG interpretation and outcome prediction in emergency department.

The American journal of emergency medicine
BACKGROUND: Approximately 20 % of emergency department (ED) visits involve cardiovascular symptoms. While ECGs are crucial for diagnosing serious conditions, interpretation accuracy varies among emergency physicians. Artificial intelligence (AI), suc...

An AI deep learning algorithm for detecting pulmonary nodules on ultra-low-dose CT in an emergency setting: a reader study.

European radiology experimental
BACKGROUND: To retrospectively assess the added value of an artificial intelligence (AI) algorithm for detecting pulmonary nodules on ultra-low-dose computed tomography (ULDCT) performed at the emergency department (ED).

Machine learning outperforms the Canadian Triage and Acuity Scale (CTAS) in predicting need for early critical care.

CJEM
STUDY OBJECTIVE: This study investigates the potential to improve emergency department (ED) triage using machine learning models by comparing their predictive performance with the Canadian Triage Acuity Scale (CTAS) in identifying the need for critic...

Improving triage performance in emergency departments using machine learning and natural language processing: a systematic review.

BMC emergency medicine
BACKGROUND: In Emergency Departments (EDs), triage is crucial for determining patient severity and prioritizing care, typically using the Manchester Triage Scale (MTS). Traditional triage systems, reliant on human judgment, are prone to under-triage ...

Proactive care management of AI-identified at-risk patients decreases preventable admissions.

The American journal of managed care
OBJECTIVES: We assessed whether proactive care management for artificial intelligence (AI)-identified at-risk patients reduced preventable emergency department (ED) visits and hospital admissions (HAs).

Performance of machine learning versus the national early warning score for predicting patient deterioration risk: a single-site study of emergency admissions.

BMJ health & care informatics
OBJECTIVES: Increasing operational pressures on emergency departments (ED) make it imperative to quickly and accurately identify patients requiring urgent clinical intervention. The widespread adoption of electronic health records (EHR) makes rich fe...

A novel deep learning algorithm for real-time prediction of clinical deterioration in the emergency department for a multimodal clinical decision support system.

Scientific reports
The array of complex and evolving patient data has limited clinical decision making in the emergency department (ED). This study introduces an advanced deep learning algorithm designed to enhance real-time prediction accuracy for integration into a n...

Unraveling Uncertainty: The Impact of Biological and Analytical Variation on the Prediction Uncertainty of Categorical Prediction Models.

The journal of applied laboratory medicine
BACKGROUND: Interest in prediction models, including machine learning (ML) models, based on laboratory data has increased tremendously. Uncertainty in laboratory measurements and predictions based on such data are inherently intertwined. This study d...