AIMC Topic: Esophageal Squamous Cell Carcinoma

Clear Filters Showing 11 to 20 of 68 articles

Machine learning-based lactate-related genes signature predicts clinical outcomes and unveils novel therapeutic targets in esophageal squamous cell carcinoma.

Cancer letters
Esophageal squamous cell carcinoma (ESCC), a predominant subtype of esophageal cancer, typically presents with poor prognosis. Lactate is a crucial metabolite in cancer and significantly impacts tumor biology. Here, we aimed to construct a lactate-re...

Development and validation of a novel artificial intelligence algorithm for precise prediction the postoperative prognosis of esophageal squamous cell carcinoma.

BMC cancer
BACKGROUND: Esophageal squamous cell carcinoma (ESCC) is a highly aggressive malignancy, and current postoperative prognostic assessment methods remain unsatisfactory, underlining the urgent to develop a reliable approach for precision medicine. Give...

Role of Artificial Intelligence in the Detection and Management of Premalignant and Malignant Lesions of the Esophagus and Stomach.

Gastrointestinal endoscopy clinics of North America
The advent of artificial intelligence (AI) and deep learning algorithms, particularly convolutional neural networks, promises to address pitfalls, bridging the care for patients at high risk with improved detection (computer-aided detection [CADe]) a...

Multimodal deep-learning model using pre-treatment endoscopic images and clinical information to predict efficacy of neoadjuvant chemotherapy in esophageal squamous cell carcinoma.

Esophagus : official journal of the Japan Esophageal Society
BACKGROUND: Neoadjuvant chemotherapy is standard for advanced esophageal squamous cell carcinoma, though often ineffective. Therefore, predicting the response to chemotherapy before treatment is desirable. However, there is currently no established m...

Prognostic Impact of Tumor Cell Nuclear Size Assessed by Artificial Intelligence in Esophageal Squamous Cell Carcinoma.

Laboratory investigation; a journal of technical methods and pathology
Tumor cell nuclear size (NS) indicates malignant potential in breast cancer; however, its clinical significance in esophageal squamous cell carcinoma (ESCC) is unknown. Artificial intelligence (AI) can quantitatively evaluate histopathological findin...

Deep learning detected histological differences between invasive and non-invasive areas of early esophageal cancer.

Cancer science
The depth of invasion plays a critical role in predicting the prognosis of early esophageal cancer, but the reasons behind invasion and the changes occurring in invasive areas are still not well understood. This study aimed to explore the morphologic...

Development of Deep Learning-Based Virtual Lugol Chromoendoscopy for Superficial Esophageal Squamous Cell Carcinoma.

Journal of gastroenterology and hepatology
BACKGROUND: Lugol chromoendoscopy has been shown to increase the sensitivity of detection of esophageal squamous cell carcinoma (ESCC). We aimed to develop a deep learning-based virtual lugol chromoendoscopy (V-LCE) method.

Machine learning to predict lymph node metastasis in T1 esophageal squamous cell carcinoma: a multicenter study.

International journal of surgery (London, England)
BACKGROUND: Existing models do poorly when it comes to quantifying the risk of lymph node metastases (LNM). This study aimed to develop a machine-learning model for LNM in patients with T1 esophageal squamous cell carcinoma (ESCC).

Comparison of machine learning methods for Predicting 3-Year survival in elderly esophageal squamous cancer patients based on oxidative stress.

BMC cancer
BACKGROUND: Oxidative stress process plays a key role in aging and cancer; however, currently, there is paucity of machine-learning model studies investigating the relationship between oxidative stress and prognosis of elderly patients with esophagea...

A F-FDG PET/CT-based deep learning-radiomics-clinical model for prediction of cervical lymph node metastasis in esophageal squamous cell carcinoma.

Cancer imaging : the official publication of the International Cancer Imaging Society
BACKGROUND: To develop an artificial intelligence (AI)-based model using Radiomics, deep learning (DL) features extracted from F-fluorodeoxyglucose (F-FDG) Positron emission tomography/Computed Tomography (PET/CT) images of tumor and cervical lymph n...