Asian Pacific journal of cancer prevention : APJCP
Jan 1, 2025
OBJECTIVE: This study aimed to develop a simple machine-learning model incorporating lymph node metastasis status with F-18 Fluorodeoxyglucose positron emission tomography/computed tomography (FDG PET/CT) and clinical information for predicting regio...
OBJECTIVES: This study evaluates the effectiveness of machine learning (ML) models that incorporate clinical and 2-deoxy-2-[F]fluoro-D-glucose ([F]-FDG)-positron emission tomography (PET)-radiomic features for predicting outcomes in gallbladder cance...
BACKGROUND/OBJECTIVES: Calculating the radiation dose from CT in F-PET/CT examinations poses a significant challenge. The objective of this study is to develop a deep learning-based automated program that standardizes the measurement of radiation dos...
BMC medical informatics and decision making
Dec 18, 2024
BACKGROUND: [F] Fluorodeoxyglucose (FDG) PET-CT is a clinical imaging modality widely used in diagnosing and staging lung cancer. The clinical findings of PET-CT studies are contained within free text reports, which can currently only be categorised ...
[F]FDG PET/CT is a powerful imaging modality of high performance in multiple myeloma (MM) and is considered the appropriate method for assessing treatment response in this disease. On the other hand, due to the heterogeneous and sometimes complex pat...
PURPOSE: This study aimed to develop and evaluate a machine learning model combining clinical, radiomics, and deep learning features derived from PET/CT imaging to predict lymph node metastasis (LNM) in patients with non-small cell lung cancer (NSCLC...
European journal of nuclear medicine and molecular imaging
Dec 2, 2024
PURPOSE: The objective of this study is to generate reliable K parametric images from a shortened [F]FDG total-body PET for clinical applications using a self-supervised neural network algorithm.
BACKGROUND: This study aims to develop habitat radiomic models to predict overall survival (OS) for hepatocellular carcinoma (HCC), based on the characterization of the intratumoral heterogeneity reflected in F-FDG PET/CT images.
Cancer imaging : the official publication of the International Cancer Imaging Society
Nov 12, 2024
BACKGROUND: To develop an artificial intelligence (AI)-based model using Radiomics, deep learning (DL) features extracted from F-fluorodeoxyglucose (F-FDG) Positron emission tomography/Computed Tomography (PET/CT) images of tumor and cervical lymph n...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.