PURPOSE: Positron emission tomography (PET) image quality can be improved by higher injected activity and/or longer acquisition time, but both may often not be practical in preclinical imaging. Common preclinical radioactive doses (10 MBq) have been ...
PURPOSE: The aim of this study is to develop a deep neural network to diagnosis Alzheimer's disease and categorize the stages of the disease using FDG-PET scans. Fluorodeoxyglucose positron emission tomography (FDG-PET) is a highly effective diagnost...
OBJECTIVES: A deep learning (DL) model using image data from pretreatment [ 18 F]fluorodeoxyglucose ([ 18 F] FDG)-PET or computed tomography (CT) augmented with a novel imaging augmentation approach was developed for the early prediction of distant m...
BACKGROUND: The rising global cancer burden has led to an increasing demand for imaging tests such as [F]fluorodeoxyglucose ([F]FDG)-PET-CT. To aid imaging specialists in dealing with high scan volumes, we aimed to train a deep learning artificial in...
BACKGROUND: Attenuation and scatter correction is crucial for quantitative positron emission tomography (PET) imaging. Direct attenuation correction (AC) in the image domain using deep learning approaches has been recently proposed for combined PET/M...
Journal of imaging informatics in medicine
38321311
This study aimed to examine the feasibility of utilizing radiomics models derived from F-FDG PET/CT imaging to screen for T-cell lymphoma in children with lymphoma. All patients had undergone F-FDG PET/CT scans. Lesions were extracted from PET/CT and...
METHODS: 18F-FDG brain PET and clinical score were collected in 85 patients with dementia and 125 healthy controls (HC). Patients were assigned to various form of dementia on the basis of clinical evaluation, follow-up and voxels comparison with HC u...
Physical and engineering sciences in medicine
38512435
Manual segmentation poses a time-consuming challenge for disease quantification, therapy evaluation, treatment planning, and outcome prediction. Convolutional neural networks (CNNs) hold promise in accurately identifying tumor locations and boundarie...
OBJECTIVES: To investigate the usefulness of machine learning (ML) models using pretreatment F-FDG-PET-based radiomic features for predicting adverse clinical events (ACEs) in patients with cardiac sarcoidosis (CS).
European journal of nuclear medicine and molecular imaging
38456971
PURPOSE: Multiple myeloma (MM) is a highly heterogeneous disease with wide variations in patient outcome. [F]FDG PET/CT can provide prognostic information in MM, but it is hampered by issues regarding standardization of scan interpretation. Our group...