AIMC Topic: Gene Ontology

Clear Filters Showing 11 to 20 of 582 articles

Screening necroptosis genes influencing osteoarthritis development based on machine learning.

Scientific reports
Machine learning can be applied to identify key genes associated with osteoarthritis (OA). This study aimed to explore the differential expression of necroptosis-related genes (NRGs) during the progression of OA, identify key gene modules strongly li...

Prediction of Drug-Target Interactions With High- Quality Negative Samples and a Network-Based Deep Learning Framework.

IEEE journal of biomedical and health informatics
Identification of drug-target interactions (DTIs) plays a crucial role in drug discovery. Compared to traditional experimental methods, computer-based methods for predicting DTIs can significantly reduce the time and financial burdens of drug develop...

An NLP-based method to mine gene and function relationships from published articles.

Scientific reports
Understanding the intricacies of genes function within biological systems is paramount for scientific advancement and medical progress. Owing to the evolving landscape of this research and the complexity of biological processes, however, this task pr...

A compendium of human gene functions derived from evolutionary modelling.

Nature
A comprehensive, computable representation of the functional repertoire of all macromolecules encoded within the human genome is a foundational resource for biology and biomedical research. The Gene Ontology Consortium has been working towards this g...

Identification of biomarkers in Alzheimer's disease and COVID-19 by bioinformatics combining single-cell data analysis and machine learning algorithms.

PloS one
BACKGROUND: Since its emergence in 2019, COVID-19 has become a global epidemic. Several studies have suggested a link between Alzheimer's disease (AD) and COVID-19. However, there is little research into the mechanisms underlying these phenomena. The...

Ontology-based expansion of virtual gene panels to improve diagnostic efficiency for rare genetic diseases.

BMC medical informatics and decision making
BACKGROUND: Virtual Gene Panels (VGP) comprising disease-associated causal genes are utilized in the diagnosis of rare genetic diseases to evaluate candidate genes identified by whole-genome and whole-exome sequencing. VGPs generated by the PanelApp ...

Identification of biomarkers associated with coronary artery disease and non-alcoholic fatty liver disease by bioinformatics analysis and machine learning.

Scientific reports
The constantly emerging evidence indicates a close association between coronary artery disease (CAD) and non-alcoholic fatty liver disease (NAFLD). However, the exact mechanisms underlying their mutual relationship remain undefined. This study aims t...

Identification of ubiquitination-related key biomarkers and immune infiltration in Crohn's disease by bioinformatics analysis and machine learning.

Scientific reports
Crohn's disease (CD) is a chronic inflammatory bowel disease with an unknown etiology. Ubiquitination plays a significant role in the pathogenesis of CD. This study aimed to explore the functional roles of ubiquitination-related genes in CD. Differen...

Supervised learning approaches for predicting Ebola-Human Protein-Protein interactions.

Gene
The goal of this research work is to predict protein-protein interactions (PPIs) between the Ebola virus and the host who is at risk of infection. Since there are very limited databases available on the Ebola virus; we have prepared a comprehensive d...

Homo Sapiens Chromosomal Location Ontology: A Framework for Genomic Data in Biomedical Knowledge Graphs.

Scientific data
The Homo sapiens Chromosomal Location Ontology (HSCLO) is designed to facilitate the integration of human genomic features into biomedical knowledge graphs from releases GRCh37 and GRCh38 at multiple resolutions. HSCLO comprises two distinct versions...