AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Genetic Variation

Showing 11 to 20 of 117 articles

Clear Filters

Deep learning approaches for non-coding genetic variant effect prediction: current progress and future prospects.

Briefings in bioinformatics
Recent advancements in high-throughput sequencing technologies have significantly enhanced our ability to unravel the intricacies of gene regulatory processes. A critical challenge in this endeavor is the identification of variant effects, a key fact...

Machine learning-based classification reveals distinct clusters of non-coding genomic allelic variations associated with Erm-mediated antibiotic resistance.

mSystems
UNLABELLED: The erythromycin resistance RNA methyltransferase () confers cross-resistance to all therapeutically important macrolides, lincosamides, and streptogramins (MLS phenotype). The expression of is often induced by the macrolide-mediated rib...

The impacts of positive selection on genomic variation in Drosophila serrata: Insights from a deep learning approach.

Molecular ecology
This study explores the impact of positive selection on the genetic composition of a Drosophila serrata population in eastern Australia through a comprehensive analysis of 110 whole genome sequences. Utilizing an advanced deep learning algorithm (par...

Artificial intelligence in plant breeding.

Trends in genetics : TIG
Harnessing cutting-edge technologies to enhance crop productivity is a pivotal goal in modern plant breeding. Artificial intelligence (AI) is renowned for its prowess in big data analysis and pattern recognition, and is revolutionizing numerous scien...

Tissue-aware interpretation of genetic variants advances the etiology of rare diseases.

Molecular systems biology
Pathogenic variants underlying Mendelian diseases often disrupt the normal physiology of a few tissues and organs. However, variant effect prediction tools that aim to identify pathogenic variants are typically oblivious to tissue contexts. Here we r...

Predicting structure-targeted food bioactive compounds for middle-aged and elderly Asians with myocardial infarction: insights from genetic variations and bioinformatics-integrated deep learning analysis.

Food & function
Myocardial infarction (MI) is a significant global health issue. Despite the advances in genome-wide association studies, a complete genetic and molecular understanding of MI is elusive and needs to be fully explored. This study aimed to elucidate th...

LOGOWheat: deep learning-based prediction of regulatory effects for noncoding variants in wheats.

Briefings in bioinformatics
Identifying the regulatory effects of noncoding variants presents a significant challenge. Recently, the accumulation of epigenomic profiling data in wheat has provided an opportunity to model the functional impacts of these variants. In this study, ...

Integrative analysis and knowledgebase construction of key candidate genes and pathways in age-related macular degeneration.

Experimental eye research
Age-related macular degeneration is a retinal disease that severely impacts vision in the older population. Its gene-related heterogeneity has not been fully studied, increasing the burden of precise treatment, prevention and prognosis. Genetic varia...

Toward trustable use of machine learning models of variant effects in the clinic.

American journal of human genetics
There has been considerable progress in building models to predict the effect of missense substitutions in protein-coding genes, fueled in large part by progress in applying deep learning methods to sequence data. These models have the potential to e...

Using GWAS and Machine Learning to Identify and Predict Genetic Variants Associated with Foodborne Bacteria Phenotypic Traits.

Methods in molecular biology (Clifton, N.J.)
One of the main challenges in food microbiology is to prevent the risk of outbreaks by avoiding the distribution of food contaminated by bacteria. This requires constant monitoring of the circulating strains throughout the food production chain. Bact...