PURPOSE: To investigate whether processing visual field (VF) measurements using a variational autoencoder (VAE) improves the structure-function relationship in glaucoma.
IMPORTANCE: Conventional segmentation of the retinal nerve fiber layer (RNFL) is prone to errors that may affect the accuracy of spectral-domain optical coherence tomography (SD-OCT) scans in detecting glaucomatous damage.
The aim of the study was to investigate the usefulness of processing visual field (VF) using a variational autoencoder (VAE). The training data consisted of 82,433 VFs from 16,836 eyes. Testing dataset 1 consisted of test-retest VFs from 104 eyes wit...
PURPOSE: To predict the visual field (VF) of glaucoma patients within the central 10° from optical coherence tomography (OCT) measurements using deep learning and tensor regression.
PURPOSE: To establish whether deep learning methods are able to improve the signal-to-noise ratio of time-domain (TD) OCT images to approach that of spectral-domain (SD) OCT images.
We aimed to classify early normal-tension glaucoma (NTG) and glaucoma suspect (GS) using Bruch's membrane opening-minimum rim width (BMO-MRW), peripapillary retinal nerve fiber layer (RNFL), and the color classification of RNFL based on a deep-learni...
PURPOSE: Rule-based approaches to determining glaucoma progression from visual fields (VFs) alone are discordant and have tradeoffs. To detect better when glaucoma progression is occurring, we used a longitudinal data set of merged VF and clinical da...
PURPOSE: Various immune mediators have crucial roles in the pathogenesis of intraocular diseases. Machine learning can be used to automatically select and weigh various predictors to develop models maximizing predictive power. However, these techniqu...
The purpose of this study is to examine if aqueous autotaxin (ATX) and TGF-β levels could be used for differentiating glaucoma subtypes. This prospective observational study was performed using aqueous humor samples obtained from 281 consecutive pati...
Genome-wide association studies (GWASs) require accurate cohort phenotyping, but expert labeling can be costly, time intensive, and variable. Here, we develop a machine learning (ML) model to predict glaucomatous optic nerve head features from color ...