AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Heart Rate

Showing 31 to 40 of 542 articles

Clear Filters

Deep CNN-based detection of cardiac rhythm disorders using PPG signals from wearable devices.

PloS one
Cardiac rhythm disorders can manifest in various ways, such as the heart rate being too fast (tachycardia) or too slow (bradycardia), irregular heartbeats (like atrial fibrillation-AF, ventricular fibrillation-VF), or the initiation of heartbeats in ...

Machine learning model for menstrual cycle phase classification and ovulation day detection based on sleeping heart rate under free-living conditions.

Computers in biology and medicine
The accurate classification of menstrual cycle phases and detection of ovulation is critical for women's health management, particularly in addressing infertility, alleviating premenstrual syndrome, and preventing hormone-related disorders. However, ...

A practical deep learning model for core temperature prediction of specialized workers in high-temperature environments.

Journal of thermal biology
The health issues of hazardous operations in high-temperature environments are increasing concerns to the public, especially since global warming and extreme weather conditions have made the high-temperature work more frequent and harsher. The abnorm...

Stress management with HRV following AI, semantic ontology, genetic algorithm and tree explainer.

Scientific reports
Heart Rate Variability (HRV) serves as a vital marker of stress levels, with lower HRV indicating higher stress. It measures the variation in the time between heartbeats and offers insights into health. Artificial intelligence (AI) research aims to u...

Transformer-based heart language model with electrocardiogram annotations.

Scientific reports
This paper explores the potential of transformer-based foundation models to detect Atrial Fibrillation (AFIB) in electrocardiogram (ECG) processing, an arrhythmia specified as an irregular heart rhythm without patterns. We construct a language with t...

Multitask learning approach for PPG applications: Case studies on signal quality assessment and physiological parameters estimation.

Computers in biology and medicine
Wearable technology has expanded the applications of photoplethysmography (PPG) in remote health monitoring, enabling real-time measurement of various physiological parameters, such as heart rate (HR), heart rate variability (HRV), and respiration ra...

Effects of Gait Rehabilitation Robot Combined with Electrical Stimulation on Spinal Cord Injury Patients' Blood Pressure.

Sensors (Basel, Switzerland)
BACKGROUND: Orthostatic hypotension can occur during acute spinal cord injury (SCI) and subsequently persist. We investigated whether a gait rehabilitation robot combined with functional electrical stimulation (FES) stabilizes hemodynamics during ort...

Comparing Phenotypes for Acute and Long-Term Response to Atrial Fibrillation Ablation Using Machine Learning.

Circulation. Arrhythmia and electrophysiology
BACKGROUND: It is difficult to identify patients with atrial fibrillation (AF) most likely to respond to ablation. While any arrhythmia patient may recur after acutely successful ablation, AF is unusual in that patients may have long-term arrhythmia ...

Cardiac Heterogeneity Prediction by Cardio-Neural Network Simulation.

Neuroinformatics
The bidirectional interactions between brain and heart through autonomic nervous system is the prime focus of neuro-cardiology community. The computer models designed to analyze brain and heart signals are either complex in terms of molecular and cel...

External validation of a machine learning-based classification algorithm for ambulatory heart rhythm diagnostics in pericardioversion atrial fibrillation patients using smartphone photoplethysmography: the SMARTBEATS-ALGO study.

Europace : European pacing, arrhythmias, and cardiac electrophysiology : journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology
AIMS: The aim of this study was to perform an external validation of an automatic machine learning (ML) algorithm for heart rhythm diagnostics using smartphone photoplethysmography (PPG) recorded by patients with atrial fibrillation (AF) and atrial f...