AIMC Topic: Image Processing, Computer-Assisted

Clear Filters Showing 41 to 50 of 9536 articles

Preoperative MRI-based deep learning reconstruction and classification model for assessing rectal cancer.

BMC medical imaging
BACKGROUND: To determine whether deep learning reconstruction (DLR) could improve the image quality of rectal MR images, and to explore the discrimination of the TN stage of rectal cancer by different readers and deep learning classification models, ...

Accelerating brain T2-weighted imaging using artificial intelligence-assisted compressed sensing combined with deep learning-based reconstruction: a feasibility study at 5.0T MRI.

BMC medical imaging
BACKGROUND: T2-weighted imaging (T2WI), renowned for its sensitivity to edema and lesions, faces clinical limitations due to prolonged scanning time, increasing patient discomfort, and motion artifacts. The individual applications of artificial intel...

Leveraging an ensemble of EfficientNetV1 and EfficientNetV2 models for classification and interpretation of breast cancer histopathology images.

Scientific reports
Breast cancer is the second leading cause of cancer-related deaths among women, following lung cancer, as of 2024. Conventional cancer diagnosis relies on the manual examination of biopsied tissues by pathologists, a time-consuming process that may v...

A hybrid XAI-driven deep learning framework for robust GI tract disease diagnosis.

Scientific reports
The stomach is one of the main digestive organs in the GIT, essential for digestion and nutrient absorption. However, various gastrointestinal diseases, including gastritis, ulcers, and cancer, affect health and quality of life severely. The precise ...

CFM-UNet: coupling local and global feature extraction networks for medical image segmentation.

Scientific reports
In medical image segmentation, traditional CNN-based models excel at extracting local features but have limitations in capturing global features. Conversely, Mamba, a novel network framework, effectively captures long-range feature dependencies and e...

Hybrid model integration with explainable AI for brain tumor diagnosis: a unified approach to MRI analysis and prediction.

Scientific reports
Effective treatment for brain tumors relies on accurate detection because this is a crucial health condition. Medical imaging plays a pivotal role in improving tumor detection and diagnosis in the early stage. This study presents two approaches to th...

Transformer attention fusion for fine grained medical image classification.

Scientific reports
Fine-grained visual classification is fundamental for medical image applications because it detects minor lesions. Diabetic retinopathy (DR) is a preventable cause of blindness, which requires exact and timely diagnosis to prevent vision damage. The ...

Super-resolution of 3D medical images by generative adversarial networks with long and short-term memory and attention.

Scientific reports
Since 3D medical imaging data is a string of sequential images, there is a strong correlation between consecutive images. Deep convolutional networks perform well in extracting spatial features, but are less capable for processing sequence data compa...

Innovative deep learning classifiers for breast cancer detection through hybrid feature extraction techniques.

Scientific reports
Breast cancer remains a major cause of mortality among women, where early and accurate detection is critical to improving survival rates. This study presents a hybrid classification approach for mammogram analysis by combining handcrafted statistical...

Multiclass semantic segmentation for prime disease detection with severity level identification in Citrus plant leaves.

Scientific reports
Agriculture provides the basics for producing food, driving economic growth, and maintaining environmental sustainability. On the other hand, plant diseases have the potential to reduce crop productivity and raise expenses, posing a risk to food secu...