AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Imaging, Three-Dimensional

Showing 171 to 180 of 1613 articles

Clear Filters

Artificial intelligence measured 3D lumbosacral body composition and clinical outcomes in rectal cancer patients.

ANZ journal of surgery
INTRODUCTION: Patient body composition (BC) has been shown to help predict clinical outcomes in rectal cancer patients. Artificial intelligence algorithms have allowed for easier acquisition of BC measurements, creating a comprehensive BC profile in ...

Automatic Segmentation of Abdominal Aortic Aneurysms From Time-Resolved 3-D Ultrasound Images Using Deep Learning.

IEEE transactions on ultrasonics, ferroelectrics, and frequency control
Abdominal aortic aneurysms (AAAs) are rupture-prone dilatations of the aorta. In current clinical practice, the maximal diameter of AAAs is monitored with 2-D ultrasound to estimate their rupture risk. Recent studies have shown that 3-D and mechanica...

Automatic 3-D Lamina Curve Extraction From Freehand 3-D Ultrasound Data Using Sequential Localization Recurrent Convolutional Networks.

IEEE transactions on ultrasonics, ferroelectrics, and frequency control
Freehand 3-D ultrasound imaging is emerging as a promising modality for regular spine exams due to its noninvasiveness and affordability. The laminae landmarks play a critical role in depicting the 3-D shape of the spine. However, the extraction of t...

CT ventilation images produced by a 3D neural network show improvement over the Jacobian and HU DIR-based methods to predict quantized lung function.

Medical physics
BACKGROUND: Radiation-induced pneumonitis affects up to 33% of non-small cell lung cancer (NSCLC) patients, with fatal pneumonitis occurring in 2% of patients. Pneumonitis risk is related to the dose and volume of lung irradiated. Clinical radiothera...

Generative modeling of the Circle of Willis using 3D-StyleGAN.

NeuroImage
The circle of Willis (CoW) is a network of cerebral arteries with significant inter-individual anatomical variations. Deep learning has been used to characterize and quantify the status of the CoW in various applications for the diagnosis and treatme...

AI-driven segmentation of the pulp cavity system in mandibular molars on CBCT images using convolutional neural networks.

Clinical oral investigations
OBJECTIVE: To develop and validate an artificial intelligence (AI)-driven tool for automated segmentation of the pulp cavity system of mandibular molars on cone-beam computed tomography (CBCT) images.

Reconstructing 3D histological structures using machine learning (artificial intelligence) algorithms.

Pathologie (Heidelberg, Germany)
BACKGROUND: Histomorphometry is currently the gold standard for bone microarchitectural examinations. This relies on two-dimensional (2D) sections to deduce the spatial properties of structures. Micromorphometric parameters are calculated from these ...

CIS-UNet: Multi-class segmentation of the aorta in computed tomography angiography via context-aware shifted window self-attention.

Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society
Advancements in medical imaging and endovascular grafting have facilitated minimally invasive treatments for aortic diseases. Accurate 3D segmentation of the aorta and its branches is crucial for interventions, as inaccurate segmentation can lead to ...

Overcoming the preferred-orientation problem in cryo-EM with self-supervised deep learning.

Nature methods
While advances in single-particle cryo-EM have enabled the structural determination of macromolecular complexes at atomic resolution, particle orientation bias (the 'preferred' orientation problem) remains a complication for most specimens. Existing ...

Recognition of autism in subcortical brain volumetric images using autoencoding-based region selection method and Siamese Convolutional Neural Network.

International journal of medical informatics
BACKGROUND: Autism Spectrum Disorder (ASD) is a neurodevelopmental condition that affects social interactions and behavior. Accurate and early diagnosis of ASD is still challenging even with the improvements in neuroimaging technology and machine lea...