AIMC Topic: Least-Squares Analysis

Clear Filters Showing 21 to 30 of 377 articles

Trace detection of antibiotics in wastewater using tunable core-shell nanoparticles SERS substrate combined with machine learning algorithms.

Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy
Surface-enhanced Raman scattering (SERS) show great potential for rapid and highly sensitive detection of trace amounts of contamination from the environment in the surface aquatic ecosystem. The widespread use of antibiotics has resulted in serious ...

Machine learning driven benchtop Vis/NIR spectroscopy for online detection of hybrid citrus quality.

Food research international (Ottawa, Ont.)
The aim of this study was to explore application of visible and near-infrared (Vis/NIR) spectroscopy combined with machine learning models for SSC and TA prediction of hybrid citrus. The Vis/NIR spectra of samples including navel-region, equator-regi...

Fault diagnosis of nonlinear analog circuits using generalized frequency response function and LSSVM.

PloS one
A fault diagnosis method of nonlinear analog circuits is proposed that combines the generalized frequency response function (GFRF) and the simplified least squares support vector machine (LSSVM). In this study, the harmonic signal is used as an input...

Determination and visualization of moisture content in Camellia oleifera seeds rapidly based on hyperspectral imaging combined with deep learning.

Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy
Moisture content (MC) is crucial for the storage, transportation, and processing of Camellia oleifera seeds. The purpose of this study was to investigate the feasibility for detecting MC in Camellia oleifera seeds using visible near-infrared hyperspe...

Identification of Phosphodiesterase type 5 inhibitors (PDE5is) analogues using surface-enhanced Raman scattering and machine learning algorithm.

Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy
Phosphodiesterase type 5 inhibitors (PDE5is), primarily used for the treatment of erectile dysfunction, have been severely misused in recent years, posing a threat to public health and safety. This study developed a method that combines Surface-enhan...

Rapid detection of microplastics in chicken feed based on near infrared spectroscopy and machine learning algorithm.

Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy
The main objective of this study was to evaluate the potential of near infrared (NIR) spectroscopy and machine learning in detecting microplastics (MPs) in chicken feed. The application of machine learning techniques in building optimal classificatio...

A rapid, non-destructive, and accurate method for identifying citrus granulation using Raman spectroscopy and machine learning.

Journal of food science
Citrus fruits are widely consumed for their nutritional value and taste; however, juice sac granulation during fruit storage poses a significant challenge to the citrus industry. This study used Raman spectroscopy coupled with machine learning algori...

Using three-dimensional fluorescence spectroscopy and machine learning for rapid detection of adulteration in camellia oil.

Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy
Camellia oil had been widely utilized in the realms of cooking, healthcare, and beauty. Nevertheless, merchants frequently adulterated pure camellia oil with low-priced oils to cut costs. This study was aimed at identifying the authenticity of camell...

A non-linear modelling approach to predict the dissolution profile of extended-release tablets.

European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences
This study proposes a novel non-linear modelling approach to predict the dissolution profiles of extended-release tablets, by combining a full-factorial design, curve fitting to the dissolution profiles, and artificial neural networks (ANN), with lin...

Preventing mislabeling of organic white button mushrooms (Agaricus bisporus) combining NMR-based foodomics, statistical, and machine learning approach.

Food research international (Ottawa, Ont.)
Organic foods are among the most susceptible to fraud and mislabeling since the differentiation between organic and conventionally grown food relies on a paper-trail-based system. This study aimed to develop a differentiation model that combines nucl...