OBJECTIVES: Reliable detection of disease-specific atrophy in individual T1w-MRI by voxel-based morphometry (VBM) requires scanner-specific normal databases (NDB), which often are not available. The aim of this retrospective study was to design, trai...
Brain tumours are produced by the uncontrolled, and unusual tissue growth of brain. Because of the wide range of brain tumour locations, potential shapes, and image intensities, segmentation of the brain tumour by magnetic resonance imaging (MRI) is ...
Journal of magnetic resonance imaging : JMRI
Nov 7, 2023
BACKGROUND: Breast MRI has been recommended as supplemental screening tool to mammography and breast ultrasound of breast cancer by international guidelines, but its long examination time and use of contrast material remains concerning.
OBJECTIVE: Modic changes (MCs) are the most prevalent classification system for describing intravertebral MRI signal intensity changes. However, interpreting these intricate MRI images is a complex and time-consuming process. This study investigates ...
IEEE journal of biomedical and health informatics
Nov 7, 2023
PET-based Alzheimer's disease (AD) assessment has many limitations in large-scale screening. Non-invasive techniques such as resting-state functional magnetic resonance imaging (rs-fMRI) have been proven valuable in early AD diagnosis. This study inv...
PURPOSE: Preclinical MR fingerprinting (MRF) suffers from long acquisition time for organ-level coverage due to demanding image resolution and limited undersampling capacity. This study aims to develop a deep learning-assisted fast MRF framework for ...
The objective of the current study was to develop and evaluate a DEep learning-based rapid Spiral Image REconstruction (DESIRE) and deep learning (DL)-based segmentation approach to quantify the left ventricular ejection fraction (LVEF) for high-reso...
Journal of stroke and cerebrovascular diseases : the official journal of National Stroke Association
Nov 4, 2023
PURPOSE: There is increasing interest in novel prognostic tools and predictive biomarkers to help identify, with more certainty, cerebral cavernous malformations (CCM) susceptible of bleeding if left untreated. We developed explainable quantitative-b...
OBJECTIVE: Radiomic and deep learning studies based on magnetic resonance imaging (MRI) of liver tumor are gradually increasing. Manual segmentation of normal hepatic tissue and tumor exhibits limitations.
This study aimed to develop a deep learning (DL) algorithm for automated detection and localization of posterior ligamentous complex (PLC) injury in patients with acute thoracolumbar (TL) fracture on magnetic resonance imaging (MRI) and evaluate its ...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.