AI Medical Compendium Topic:
Magnetic Resonance Imaging

Clear Filters Showing 751 to 760 of 5968 articles

Deep learning applications for quantitative and qualitative PET in PET/MR: technical and clinical unmet needs.

Magma (New York, N.Y.)
We aim to provide an overview of technical and clinical unmet needs in deep learning (DL) applications for quantitative and qualitative PET in PET/MR, with a focus on attenuation correction, image enhancement, motion correction, kinetic modeling, and...

Beyond the Conventional Structural MRI: Clinical Application of Deep Learning Image Reconstruction and Synthetic MRI of the Brain.

Investigative radiology
Recent technological advancements have revolutionized routine brain magnetic resonance imaging (MRI) sequences, offering enhanced diagnostic capabilities in intracranial disease evaluation. This review explores 2 pivotal breakthrough areas: deep lear...

Ensemble learning-based pretreatment MRI radiomic model for distinguishing intracranial extraventricular ependymoma from glioblastoma multiforme.

NMR in biomedicine
This study aims to develop an ensemble learning (EL) method based on magnetic resonance (MR) radiomic features to preoperatively differentiate intracranial extraventricular ependymoma (IEE) from glioblastoma (GBM). This retrospective study enrolled p...

A minimalistic approach to classifying Alzheimer's disease using simple and extremely small convolutional neural networks.

Journal of neuroscience methods
BACKGROUND: There is a broad interest in deploying deep learning-based classification algorithms to identify individuals with Alzheimer's disease (AD) from healthy controls (HC) based on neuroimaging data, such as T1-weighted Magnetic Resonance Imagi...

Unveiling the core functional networks of cognition: An ontology-guided machine learning approach.

NeuroImage
Deciphering the functional architecture that underpins diverse cognitive functions is fundamental quest in neuroscience. In this study, we employed an innovative machine learning framework that integrated cognitive ontology with functional connectivi...

Beyond hand-crafted features for pretherapeutic molecular status identification of pediatric low-grade gliomas.

Scientific reports
The use of targeted agents in the treatment of pediatric low-grade gliomas (pLGGs) relies on the determination of molecular status. It has been shown that genetic alterations in pLGG can be identified non-invasively using MRI-based radiomic features ...

Spatiotemporal discoordination of brain spontaneous activity in major depressive disorder.

Journal of affective disorders
BACKGROUND: Major depressive disorder (MDD) is a widespread mental health issue, impacting spatial and temporal aspects of brain activity. The neural mechanisms behind MDD remain unclear. To address this gap, we introduce a novel measure, spatiotempo...

Altered dynamic large-scale brain networks and combined machine learning in primary angle-closure glaucoma.

Neuroscience
Primary angle-closure glaucoma (PACG) is a severe and irreversible blinding eye disease characterized by progressive retinal ganglion cell death. However, prior research has predominantly focused on static brain activity changes, neglecting the explo...