AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Medulloblastoma

Showing 1 to 10 of 10 articles

Clear Filters

Study on Contribution of Biological Interpretable and Computer-Aided Features Towards the Classification of Childhood Medulloblastoma Cells.

Journal of medical systems
Diagnosis and Prognosis of brain tumour in children is always a critical case. Medulloblastoma is that subtype of brain tumour which occurs most frequently amongst children. Post-operation, the classification of its subtype is most vital for further ...

Classification of paediatric brain tumours by diffusion weighted imaging and machine learning.

Scientific reports
To determine if apparent diffusion coefficients (ADC) can discriminate between posterior fossa brain tumours on a multicentre basis. A total of 124 paediatric patients with posterior fossa tumours (including 55 Medulloblastomas, 36 Pilocytic Astrocyt...

Deep learning-based automatic tumor burden assessment of pediatric high-grade gliomas, medulloblastomas, and other leptomeningeal seeding tumors.

Neuro-oncology
BACKGROUND: Longitudinal measurement of tumor burden with magnetic resonance imaging (MRI) is an essential component of response assessment in pediatric brain tumors. We developed a fully automated pipeline for the segmentation of tumors in pediatric...

Automatic image segmentation and online survival prediction model of medulloblastoma based on machine learning.

European radiology
OBJECTIVES: To develop a dynamic nomogram containing radiomics signature and clinical features for estimating the overall survival (OS) of patients with medulloblastoma (MB) and design an automatic image segmentation model to reduce labor and time co...

Multiparametric MRI-Based Interpretable Radiomics Machine Learning Model Differentiates Medulloblastoma and Ependymoma in Children: A Two-Center Study.

Academic radiology
RATIONALE AND OBJECTIVES: Medulloblastoma (MB) and Ependymoma (EM) in children, share similarities in age group, tumor location, and clinical presentation. Distinguishing between them through clinical diagnosis is challenging. This study aims to expl...

Deep learning models for predicting the survival of patients with medulloblastoma based on a surveillance, epidemiology, and end results analysis.

Scientific reports
Medulloblastoma is a malignant neuroepithelial tumor of the central nervous system. Accurate prediction of prognosis is essential for therapeutic decisions in medulloblastoma patients. We analyzed data from 2,322 medulloblastoma patients using the SE...

Machine learning-based models for prediction of survival in medulloblastoma: a systematic review and meta-analysis.

Neurological sciences : official journal of the Italian Neurological Society and of the Italian Society of Clinical Neurophysiology
BACKGROUND: Medulloblastoma (MB) is the pediatric population's most frequent malignant intracranial lesions. Prognostication plays a crucial role in optimizing treatment strategy in the MB setting. Several studies have developed ML-based models to pr...

Machine Learning-Driven Identification of Molecular Subgroups in Medulloblastoma via Gene Expression Profiling.

Clinical oncology (Royal College of Radiologists (Great Britain))
AIMS: Medulloblastoma (MB) is the most prevalent malignant brain tumour in children, characterised by substantial molecular heterogeneity across its subgroups. Accurate classification is pivotal for personalised treatment strategies and prognostic as...

Deep learning to decode sites of RNA translation in normal and cancerous tissues.

Nature communications
The biological process of RNA translation is fundamental to cellular life and has wide-ranging implications for human disease. Accurate delineation of RNA translation variation represents a significant challenge due to the complexity of the process a...