AIMC Topic: Microbial Sensitivity Tests

Clear Filters Showing 31 to 40 of 289 articles

Machine learning detection of heteroresistance in Escherichia coli.

EBioMedicine
BACKGROUND: Heteroresistance (HR) is a significant type of antibiotic resistance observed for several bacterial species and antibiotic classes where a susceptible main population contains small subpopulations of resistant cells. Mathematical models, ...

ML-AMPs designed through machine learning show antifungal activity against C. albicans and therapeutic potential on mice model with candidiasis.

Life sciences
AIMS: C. albicans resistant strains have led to increasingly severe treatment challenges. Antimicrobial peptides with low resistance-inducing propensity for pathogens have been developed. A series of antimicrobial peptides de novo designed through ma...

Deep Learning Combined with Quantitative Structure‒Activity Relationship Accelerates De Novo Design of Antifungal Peptides.

Advanced science (Weinheim, Baden-Wurttemberg, Germany)
Novel antifungal drugs that evade resistance are urgently needed for Candida infections. Antifungal peptides (AFPs) are potential candidates due to their specific mechanism of action, which makes them less prone to developing drug resistance. An AFP ...

MSCMamba: Prediction of Antimicrobial Peptide Activity Values by Fusing Multiscale Convolution with Mamba Module.

The journal of physical chemistry. B
Antimicrobial peptides (AMPs) have important developmental prospects as potential candidates for novel antibiotics. Although many studies have been devoted to the identification of AMPs and the qualitative prediction of their functional activities, f...

Deep learning-driven bacterial cytological profiling to determine antimicrobial mechanisms in .

Proceedings of the National Academy of Sciences of the United States of America
Tuberculosis (TB), caused by , remains a significant global health threat, affecting an estimated 10.6 million people in 2022. The emergence of multidrug resistant and extensively drug resistant strains necessitates the development of novel and effec...

Artificial intelligence using a latent diffusion model enables the generation of diverse and potent antimicrobial peptides.

Science advances
Artificial intelligence holds great promise for the design of antimicrobial peptides (AMPs); however, current models face limitations in generating AMPs with sufficient novelty and diversity, and they are rarely applied to the generation of antifunga...

End-To-End Deep Learning Explains Antimicrobial Resistance in Peak-Picking-Free MALDI-MS Data.

Analytical chemistry
Mass spectrometry is used to determine infectious microbial species in thousands of clinical laboratories across the world. The vast amount of data allows modern data analysis methods that harvest more information and potentially answer new questions...

Integrating Machine Learning with MALDI-TOF Mass Spectrometry for Rapid and Accurate Antimicrobial Resistance Detection in Clinical Pathogens.

International journal of molecular sciences
Antimicrobial resistance (AMR) is one of the most pressing public health challenges of the 21st century. This study aims to evaluate the efficacy of mass spectral data generated by VITEK MS instruments for predicting antibiotic resistance in , , and ...

Essential Oils as Antimicrobials against : Experimental and Literature Data to Definite Predictive Quantitative Composition-Activity Relationship Models Using Machine Learning Algorithms.

Journal of chemical information and modeling
Essential oils (EOs) exhibit a broad spectrum of biological activities; however, their clinical application is hindered by challenges, such as variability in chemical composition and chemical/physical instability. A critical limitation is the lack of...