BACKGROUND AND OBJECTIVES: Patients with synucleinopathies such as multiple system atrophy (MSA) and Parkinson's disease (PD) frequently display speech and language abnormalities. We explore the diagnostic potential of automated linguistic analysis o...
Retrieval-augmented generation (RAG) involves a solution by retrieving knowledge from an established database to enhance the performance of large language models (LLM). , these models retrieve information at the sentence or paragraph level, potential...
BMC medical informatics and decision making
Jan 13, 2025
BACKGROUND: Anhedonia and suicidal ideation are symptoms of major depressive disorder (MDD) that are not regularly captured in structured scales but may be captured in unstructured clinical notes. Natural language processing (NLP) techniques may be u...
During the Covid-19 pandemic, the widespread use of social media platforms has facilitated the dissemination of information, fake news, and propaganda, serving as a vital source of self-reported symptoms related to Covid-19. Existing graph-based mode...
Protein succinylation, a post-translational modification wherein a succinyl group (-CO-CH₂-CH₂-CO-) attaches to lysine residues, plays a critical regulatory role in cellular processes. Dysregulated succinylation has been implicated in the onset and p...
Complex deep learning models trained on very large datasets have become key enabling tools for current research in natural language processing and computer vision. By providing pre-trained models that can be fine-tuned for specific applications, they...
Semantical text understanding holds significant importance in natural language processing (NLP). Numerous datasets, such as Quora Question Pairs (QQP), have been devised for this purpose. In our previous study, we developed a Siamese Convolutional Ne...
Assessing whether texts are positive or negative-sentiment analysis-has wide-ranging applications across many disciplines. Automated approaches make it possible to code near unlimited quantities of texts rapidly, replicably, and with high accuracy. C...
Chronic kidney disease (CKD) significantly increases the risk of CVD diseases, particularly among elderly patients. Understanding the interaction between several biomarkers and cardiovascular (CVD) risks is crucial for improving patient outcomes and ...
BACKGROUND: Natural language processing (NLP) and machine learning (ML) techniques may help harness unstructured free-text electronic health record (EHR) data to detect adverse drug events (ADEs) and thus improve pharmacovigilance. However, evidence ...