AIMC Topic: Neoplasm Invasiveness

Clear Filters Showing 91 to 100 of 198 articles

Prediction of visceral pleural invasion of clinical stage I lung adenocarcinoma using thoracoscopic images and deep learning.

Surgery today
PURPOSE: To develop deep learning models using thoracoscopic images to identify visceral pleural invasion (VPI) in patients with clinical stage I lung adenocarcinoma, and to verify if these models can be applied clinically.

Deep learning-based solid component measuring enabled interpretable prediction of tumor invasiveness for lung adenocarcinoma.

Lung cancer (Amsterdam, Netherlands)
BACKGROUND: The nature of the solid component of subsolid nodules (SSNs) can indicate tumor pathological invasiveness. However, preoperative solid component assessment still lacks a reference standard.

Lung-PNet: An Automated Deep Learning Model for the Diagnosis of Invasive Adenocarcinoma in Pure Ground-Glass Nodules on Chest CT.

AJR. American journal of roentgenology
Pure ground-glass nodules (pGGNs) on chest CT representing invasive adenocarcinoma (IAC) warrant lobectomy with lymph node resection. For pGGNs representing other entities, close follow-up or sublobar resection without node dissection may be appropr...

Contrast-Enhanced Ultrasound with Deep Learning with Attention Mechanisms for Predicting Microvascular Invasion in Single Hepatocellular Carcinoma.

Academic radiology
RATIONALE AND OBJECTIVES: Prediction of microvascular invasion (MVI) status of hepatocellular carcinoma (HCC) holds clinical significance for decision-making regarding the treatment strategy and evaluation of patient prognosis. We developed a deep le...

Deep learning-based image reconstruction improves radiologic evaluation of pituitary axis and cavernous sinus invasion in pituitary adenoma.

European journal of radiology
PURPOSE: To compare performance of 1-mm deep learning reconstruction (DLR) with 3-mm routine MRI imaging for the delineation of pituitary axis and identification of cavernous sinus invasion for pituitary macroadenoma.

Measuring pure ground-glass nodules on computed tomography: assessing agreement between a commercially available deep learning algorithm and radiologists' readings.

Acta radiologica (Stockholm, Sweden : 1987)
BACKGROUND: Deep learning algorithms (DLAs) could enable automatic measurements of solid portions of mixed ground-glass nodules (mGGNs) in agreement with the invasive component sizes measured during pathologic examinations. However, the measurement o...

Multi-task deep learning based on T2-Weighted Images for predicting Muscular-Invasive Bladder Cancer.

Computers in biology and medicine
BACKGROUND: An accurate preoperative assessment of Non-Muscle-Invasive Bladder Cancer (NMIBC) and Muscle-Invasive Bladder Cancer (MIBC) in Bladder Cancer (BCa) can help the urologist make diagnostic decisions. Considering the absence of multiparametr...