AIMC Topic: Neural Networks, Computer

Clear Filters Showing 211 to 220 of 29777 articles

Realistic fundus photograph generation for improving automated disease classification.

The British journal of ophthalmology
AIMS: This study aims to investigate whether denoising diffusion probabilistic models (DDPMs) could generate realistic retinal images, and if they could be used to improve the performance of a deep convolutional neural network (CNN) ensemble for mult...

The Rapid Online Cognitive Assessment for the Detection of Neurocognitive Disorder: Open-Label Study.

Journal of medical Internet research
BACKGROUND: The rising prevalence of dementia necessitates a scalable solution to cognitive screening. Paper-based cognitive screening examinations are well-validated but minimally scalable. If a digital cognitive screening examination could replicat...

Deep learning detects retropharyngeal edema on MRI in patients with acute neck infections.

European radiology experimental
BACKGROUND: In acute neck infections, magnetic resonance imaging (MRI) shows retropharyngeal edema (RPE), which is a prognostic imaging biomarker for a severe course of illness. This study aimed to develop a deep learning-based algorithm for the auto...

Circular saw blade wear status prediction based on generative adversarial network and CNN-LSTM model.

PloS one
Monitoring the status of circular saw blades is an effective measure to ensure the production efficiency and safety of spent fuel assembly cutting. However, the prediction of wear during the cutting of stainless steel shells of spent fuel assemblies ...

DeepRice6mA: A convolutional neural network approach for 6mA site prediction in the rice Genome.

PloS one
As one of the most critical post-replication modifications, N6-methylation (6mA) at adenine residue plays an important role in a variety of biological functions. Existing computational methods for identifying 6mA sites across large genomic regions te...

Soil moisture mapping in Indian tropical islands with C-band SAR and artificial neural network models.

Environmental monitoring and assessment
This study aims at analyzing the patterns of soil moisture in the South Andaman district using an integrated approach that incorporates Sentinel-1A C-band synthetic aperture radar (SAR) data and other auxiliary data from Sentinel-2A and Landsat 8. A ...

Identifying and predicting EEG microstates with sequence-to-sequence deep learning models for online applications.

Journal of neural engineering
Electroencephalographic (EEG) microstates, as a non-invasive and high-temporal-resolution tool for analyzing time-space features of brain activity, have been validated and applied in various research domains. However, current methods for EEG microsta...

Arrhythmia classification based on multi-input convolutional neural network with attention mechanism.

PloS one
Arrhythmia is a prevalent cardiac disorder that can lead to severe complications such as stroke and cardiac arrest. While deep learning has advanced automated ECG analysis, challenges remain in accurately classifying arrhythmias due to signal variabi...

Fast and accurate lung cancer subtype classication and localization based on Intraoperative frozen sections of lung adenocarcinoma.

Biomedical physics & engineering express
Current lung cancer diagnostic techniques primarily focus on tissue subtype classification, yet remain inadequate in distinguishing pathological progression subtypes (particularly between adenocarcinomaand invasive adenocarcinoma) on frozen sections....

Application Value of Deep Learning-Based AI Model in the Classification of Breast Nodules.

British journal of hospital medicine (London, England : 2005)
Breast nodules are highly prevalent among women, and ultrasound is a widely used screening tool. However, single ultrasound examinations often result in high false-positive rates, leading to unnecessary biopsies. Artificial intelligence (AI) has dem...