We propose BrainNetCNN, a convolutional neural network (CNN) framework to predict clinical neurodevelopmental outcomes from brain networks. In contrast to the spatially local convolutions done in traditional image-based CNNs, our BrainNetCNN is compo...
Early postnatal brain undergoes a stunning period of development. Over the past few years, research on dynamic infant brain development has received increased attention, exhibiting how important the early stages of a child's life are in terms of brai...
BACKGROUND AND AIMS: Preterm birth imposes a high risk for developing neuromotor delay. Earlier prediction of adverse outcome in preterm infants is crucial for referral to earlier intervention. This study aimed to predict abnormal motor outcome at 2 ...
Survivors following very premature birth (i.e., ≤ 32 weeks gestational age) remain at high risk for neurodevelopmental impairments. Recent advances in deep learning techniques have made it possible to aid the early diagnosis and prognosis of neurodev...
Haploinsufficiency, wherein a single allele is not enough to maintain normal functions, can lead to many diseases including cancers and neurodevelopmental disorders. Recently, computational methods for identifying haploinsufficiency have been develop...