AIMC Topic: Neurons

Clear Filters Showing 61 to 70 of 1388 articles

Finger Vein Recognition Based on Unsupervised Spiking Convolutional Neural Network with Adaptive Firing Threshold.

Sensors (Basel, Switzerland)
Currently, finger vein recognition (FVR) stands as a pioneering biometric technology, with convolutional neural networks (CNNs) and Transformers, among other advanced deep neural networks (DNNs), consistently pushing the boundaries of recognition acc...

RRAM-Based Spiking Neural Network With Target-Modulated Spike-Timing-Dependent Plasticity.

IEEE transactions on biomedical circuits and systems
The spiking neural network (SNN) training with spike timing-dependent plasticity (STDP) for image classification usually requires a lot of neurons to extract representative features and(or) needs an external classifier. Conventional bio-inspired lear...

A hybrid bioelectronic retina-probe interface for object recognition.

Biosensors & bioelectronics
Retina converts light stimuli into spike firings, encoding abundant visual information critical for both fundamental studies of the visual system and therapies for visual diseases. However, probing these spikes directly from the retina is hindered by...

Phase of firing does not reflect temporal order in sequence memory of humans and recurrent neural networks.

Nature neuroscience
The temporal order of a sequence of events has been thought to be reflected in the ordered firing of neurons at different phases of theta oscillations. Here we assess this by measuring single neuron activity (1,420 neurons) and local field potentials...

Unveiling CNS cell morphology with deep learning: A gateway to anti-inflammatory compound screening.

PloS one
Deciphering the complex relationships between cellular morphology and phenotypic manifestations is crucial for understanding cell behavior, particularly in the context of neuropathological states. Despite its importance, the application of advanced i...

Sparse connectivity enables efficient information processing in cortex-like artificial neural networks.

Frontiers in neural circuits
Neurons in cortical networks are very sparsely connected; even neurons whose axons and dendrites overlap are highly unlikely to form a synaptic connection. What is the relevance of such sparse connectivity for a network's function? Surprisingly, it h...

Interpretable deep learning for deconvolutional analysis of neural signals.

Neuron
The widespread adoption of deep learning to model neural activity often relies on "black-box" approaches that lack an interpretable connection between neural activity and network parameters. Here, we propose using algorithm unrolling, a method for in...

FPGA implementation of a complete digital spiking silicon neuron for circuit design and network approach.

Scientific reports
When attempting to replicate the same biological spiking neuron model actions of the human brain, the spiking neuron model methodology and hardware realization design for the nervous system of the brain are crucial considerations. This work provides ...

Structure of activity in multiregion recurrent neural networks.

Proceedings of the National Academy of Sciences of the United States of America
Neural circuits comprise multiple interconnected regions, each with complex dynamics. The interplay between local and global activity is thought to underlie computational flexibility, yet the structure of multiregion neural activity and its origins i...

A general framework for interpretable neural learning based on local information-theoretic goal functions.

Proceedings of the National Academy of Sciences of the United States of America
Despite the impressive performance of biological and artificial networks, an intuitive understanding of how their local learning dynamics contribute to network-level task solutions remains a challenge to this date. Efforts to bring learning to a more...