AIMC Topic: Postoperative Complications

Clear Filters Showing 91 to 100 of 967 articles

Machine learning models for predicting dysphonia following anterior cervical discectomy and fusion: a Swedish Registry Study.

The spine journal : official journal of the North American Spine Society
BACKGROUND: Dysphonia is one of the more common complications following anterior cervical discectomy and fusion (ACDF). ACDF is the gold standard for treating degenerative cervical spine disorders, and identifying high-risk patients is therefore cruc...

Predicting the risk of pulmonary infection after kidney transplantation using machine learning methods: a retrospective cohort study.

International urology and nephrology
PURPOSE: Pulmonary infection is the most common and serious complication after kidney transplantation that affects the survival of the transplanted kidney and the quality of life of patients. This study aims to construct a machine learning model for ...

Leveraging machine learning to enhance postoperative risk assessment in coronary artery bypass grafting patients with unprotected left main disease: a retrospective cohort study.

International journal of surgery (London, England)
BACKGROUND: Risk stratification for patients undergoing coronary artery bypass surgery (CABG) for left main coronary artery (LMCA) disease is essential for informed decision-making. This study explored the potential of machine learning (ML) methods t...

Online interpretable dynamic prediction models for clinically significant posthepatectomy liver failure based on machine learning algorithms: a retrospective cohort study.

International journal of surgery (London, England)
BACKGROUND: Posthepatectomy liver failure (PHLF) is the leading cause of mortality in patients undergoing hepatectomy. However, practical models for accurately predicting the risk of PHLF are lacking. This study aimed to develop precise prediction mo...

Predictive performance of machine learning models for kidney complications following coronary interventions: a systematic review and meta-analysis.

International urology and nephrology
BACKGROUND: Acute kidney injury (AKI) and contrast-induced nephropathy (CIN) are common complications following percutaneous coronary intervention (PCI) or coronary angiography (CAG), presenting significant clinical challenges. Machine learning (ML) ...

Racial and Ethnic Disparities in Predictive Accuracy of Machine Learning Algorithms Developed Using a National Database for 30-Day Complications Following Total Joint Arthroplasty.

The Journal of arthroplasty
BACKGROUND: While predictive capabilities of machine learning (ML) algorithms for hip and knee total joint arthroplasty (TJA) have been demonstrated in previous studies, their performance in racial and ethnic minority patients has not been investigat...

Artificial Intelligence-Based Assessment of Preoperative Body Composition Is Associated With Early Complications After Radical Cystectomy.

The Journal of urology
PURPOSE: We aimed to use a validated artificial intelligence (AI) algorithm to extract muscle and adipose areas from CT images before radical cystectomy (RCx) and then correlate these measures with 90-day post-RCx complications.

Machine Learning for Prediction of Postoperative Delirium in Adult Patients: A Systematic Review and Meta-analysis.

Clinical therapeutics
PURPOSE: This meta-analysis aimed to evaluate the performance of machine learning (ML) models in predicting postoperative delirium (POD) and to provide guidance for clinical application.

Predictive modeling of arginine vasopressin deficiency after transsphenoidal pituitary adenoma resection by using multiple machine learning algorithms.

Scientific reports
This study aimed to predict arginine vasopressin deficiency (AVP-D) following transsphenoidal pituitary adenoma surgery using machine learning algorithms. We reviewed 452 cases from December 2013 to December 2023, analyzing clinical and imaging data....