AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Postoperative Complications

Showing 51 to 60 of 924 articles

Clear Filters

Artificial Intelligence in Predicting Ocular Hypertension After Descemet Membrane Endothelial Keratoplasty.

Investigative ophthalmology & visual science
PURPOSE: Descemet membrane endothelial keratoplasty (DMEK) has emerged as a novel approach in corneal transplantation over the past two decades. This study aims to identify predisposing risk factors for post-DMEK ocular hypertension (OHT) and develop...

Statistical models versus machine learning approach for competing risks in proctological surgery.

Updates in surgery
Clinical risk prediction models are ubiquitous in many surgical domains. The traditional approach to develop these models involves the use of regression analysis. Machine learning algorithms are gaining in popularity as an alternative approach for pr...

Prediction of facial nerve outcomes after surgery for vestibular schwannoma using machine learning-based models: a systematic review and meta-analysis.

Neurosurgical review
Postoperative facial nerve (FN) dysfunction is associated with a significant impact on the quality of life of patients and can result in psychological stress and disorders such as depression and social isolation. Preoperative prediction of FN outcome...

Ten Machine Learning Models for Predicting Preoperative and Postoperative Coagulopathy in Patients With Trauma: Multicenter Cohort Study.

Journal of medical Internet research
BACKGROUND: Recent research has revealed the potential value of machine learning (ML) models in improving prognostic prediction for patients with trauma. ML can enhance predictions and identify which factors contribute the most to posttraumatic morta...

Predicting Postoperative Infection After Cytoreductive Surgery and Hyperthermic Intraperitoneal Chemotherapy with Splenectomy.

Annals of surgical oncology
BACKGROUND: Hematologic changes after splenectomy and hyperthermic intraperitoneal chemotherapy (HIPEC) can complicate postoperative assessment of infection. This study aimed to develop a machine-learning model to predict postoperative infection afte...

Machine learning-based prediction for incidence of endoscopic retrograde cholangiopancreatography after emergency laparoscopic cholecystectomy: A retrospective, multicenter cohort study.

Surgical endoscopy
BACKGROUND: Laparoscopic cholecystectomy is the preferred treatment for symptomatic cholelithiasis and acute cholecystitis, with increasing applications even in severe cases. However, the possibility of postoperative endoscopic retrograde cholangiopa...

Development of a LASSO machine learning algorithm-based model for postoperative delirium prediction in hepatectomy patients.

BMC surgery
OBJECTIVE: The objective of this study was to develop and validate a clinically applicable nomogram for predicting the risk of delirium following hepatectomy.

Unveiling the Immune Landscape of Delirium through Single-Cell RNA Sequencing and Machine Learning: Towards Precision Diagnosis and Therapy.

Psychogeriatrics : the official journal of the Japanese Psychogeriatric Society
BACKGROUND: Postoperative delirium (POD) poses significant clinical challenges regarding its diagnosis and treatment. Identifying biomarkers that can predict and diagnose POD is crucial for improving patient outcomes.

Machine learning algorithms for predicting delayed hyponatremia after transsphenoidal surgery for patients with pituitary adenoma.

Scientific reports
This study aimed to develop and validate machine learning (ML) models to predict the occurrence of delayed hyponatremia after transsphenoidal surgery for pituitary adenoma. We retrospectively collected clinical data on patients with pituitary adenoma...