AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Radiographic Image Interpretation, Computer-Assisted

Showing 161 to 170 of 1176 articles

Clear Filters

Deep Learning-Based Denoising Enables High-Quality, Fully Diagnostic Neuroradiological Trauma CT at 25% Radiation Dose.

Academic radiology
RATIONALE AND OBJECTIVES: Traumatic neuroradiological emergencies necessitate rapid and accurate diagnosis, often relying on computed tomography (CT). However, the associated ionizing radiation poses long-term risks. Modern artificial intelligence re...

The Potential Clinical Utility of an Artificial Intelligence Model for Identification of Vertebral Compression Fractures in Chest Radiographs.

Journal of the American College of Radiology : JACR
PURPOSE: To assess the ability of the Annalise Enterprise CXR Triage Trauma (Annalise AI Pty Ltd, Sydney, NSW, Australia) artificial intelligence model to identify vertebral compression fractures on chest radiographs and its potential to address undi...

Pulmonary nodule visualization and evaluation of AI-based detection at various ultra-low-dose levels using photon-counting detector CT.

Acta radiologica (Stockholm, Sweden : 1987)
BACKGROUND: Radiation dose should be as low as reasonably achievable. With the invention of photon-counting detector computed tomography (PCD-CT), the radiation dose may be considerably reduced.

Radiomics machine learning algorithm facilitates detection of small pancreatic neuroendocrine tumors on CT.

Diagnostic and interventional imaging
PURPOSE: The purpose of this study was to develop a radiomics-based algorithm to identify small pancreatic neuroendocrine tumors (PanNETs) on CT and evaluate its robustness across manual and automated segmentations, exploring the feasibility of autom...

Convolutional Neural Networks for Segmentation of Pleural Mesothelioma: Analysis of Probability Map Thresholds (CALGB 30901, Alliance).

Journal of imaging informatics in medicine
The purpose of this study was to evaluate the impact of probability map threshold on pleural mesothelioma (PM) tumor delineations generated using a convolutional neural network (CNN). One hundred eighty-six CT scans from 48 PM patients were segmented...

Skeleton-guided 3D convolutional neural network for tubular structure segmentation.

International journal of computer assisted radiology and surgery
PURPOSE: Accurate segmentation of tubular structures is crucial for clinical diagnosis and treatment but is challenging due to their complex branching structures and volume imbalance. The purpose of this study is to propose a 3D deep learning network...

Advancements in supervised deep learning for metal artifact reduction in computed tomography: A systematic review.

European journal of radiology
BACKGROUND: Metallic artefacts caused by metal implants, are a common problem in computed tomography (CT) imaging, degrading image quality and diagnostic accuracy. With advancements in artificial intelligence, novel deep learning (DL)-based metal art...

Low-dose computed tomography perceptual image quality assessment.

Medical image analysis
In computed tomography (CT) imaging, optimizing the balance between radiation dose and image quality is crucial due to the potentially harmful effects of radiation on patients. Although subjective assessments by radiologists are considered the gold s...

Hematoma expansion prediction in intracerebral hemorrhage patients by using synthesized CT images in an end-to-end deep learning framework.

Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society
Spontaneous intracerebral hemorrhage (ICH) is a type of stroke less prevalent than ischemic stroke but associated with high mortality rates. Hematoma expansion (HE) is an increase in the bleeding that affects 30%-38% of hemorrhagic stroke patients. I...