AIMC Topic: Radiographic Image Interpretation, Computer-Assisted

Clear Filters Showing 161 to 170 of 1289 articles

AI-assisted detection for chest X-rays (AID-CXR): a multi-reader multi-case study protocol.

BMJ open
INTRODUCTION: A chest X-ray (CXR) is the most common imaging investigation performed worldwide. Advances in machine learning and computer vision technologies have led to the development of several artificial intelligence (AI) tools to detect abnormal...

A multimodal deep-learning model based on multichannel CT radiomics for predicting pathological grade of bladder cancer.

Abdominal radiology (New York)
OBJECTIVE: To construct a predictive model using deep-learning radiomics and clinical risk factors for assessing the preoperative histopathological grade of bladder cancer according to computed tomography (CT) images.

Quantitative analysis of deep learning reconstruction in CT angiography: Enhancing CNR and reducing dose.

Journal of X-ray science and technology
BACKGROUND: Computed tomography angiography (CTA) provides significant information on image quality in vascular imaging, thus offering high-resolution images despite having the disadvantages of increased radiation doses and contrast agent-related sid...

Reduced-dose deep learning iterative reconstruction for abdominal computed tomography with low tube voltage and tube current.

BMC medical informatics and decision making
BACKGROUND: The low tube-voltage technique (e.g., 80 kV) can efficiently reduce the radiation dose and increase the contrast enhancement of vascular and parenchymal structures in abdominal CT. However, a high tube current is always required in this s...

Segmentation for mammography classification utilizing deep convolutional neural network.

BMC medical imaging
BACKGROUND: Mammography for the diagnosis of early breast cancer (BC) relies heavily on the identification of breast masses. However, in the early stages, it might be challenging to ascertain whether a breast mass is benign or malignant. Consequently...