AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Radiographic Image Interpretation, Computer-Assisted

Showing 471 to 480 of 1176 articles

Clear Filters

Deep learning-based reconstruction on cardiac CT yields distinct radiomic features compared to iterative and filtered back projection reconstructions.

Scientific reports
We aimed to determine the effects of deep learning-based reconstruction (DLR) on radiomic features obtained from cardiac computed tomography (CT) by comparing with iterative reconstruction (IR), and filtered back projection (FBP). A total of 284 cons...

[Relationship between Image Quality and Reconstruction FOV in Deep Learning Reconstructed Images of CT].

Nihon Hoshasen Gijutsu Gakkai zasshi
In this study, we compared the image quality of deep learning reconstruction (DLR) with that of conventional image reconstruction methods under the same conditions of reconstruction FOV and acquisition dose assuming abdomen computed tomography (CT) i...

Self-Supervised Transfer Learning Based on Domain Adaptation for Benign-Malignant Lung Nodule Classification on Thoracic CT.

IEEE journal of biomedical and health informatics
The spatial heterogeneity is an important indicator of the malignancy of lung nodules in lung cancer diagnosis. Compared with 2D nodule CT images, the 3D volumes with entire nodule objects hold richer discriminative information. However, for deep lea...

Deep-learning image reconstruction for image quality evaluation and accurate bone mineral density measurement on quantitative CT: A phantom-patient study.

Frontiers in endocrinology
BACKGROUND AND PURPOSE: To investigate the image quality and accurate bone mineral density (BMD) on quantitative CT (QCT) for osteoporosis screening by deep-learning image reconstruction (DLIR) based on a multi-phantom and patient study.

Quantitative and qualitative assessments of deep learning image reconstruction in low-keV virtual monoenergetic dual-energy CT.

European radiology
OBJECTIVES: To evaluate a novel deep learning image reconstruction (DLIR) technique for dual-energy CT (DECT) derived virtual monoenergetic (VM) images compared to adaptive statistical iterative reconstruction (ASIR-V) in low kiloelectron volt (keV) ...

Improved image quality and dose reduction in abdominal CT with deep-learning reconstruction algorithm: a phantom study.

European radiology
OBJECTIVES: To assess the impact of a new artificial intelligence deep-learning reconstruction (Precise Image; AI-DLR) algorithm on image quality against a hybrid iterative reconstruction (IR) algorithm in abdominal CT for different clinical indicati...

The evaluation of the reduction of radiation dose via deep learning-based reconstruction for cadaveric human lung CT images.

Scientific reports
To compare the quality of CT images of the lung reconstructed using deep learning-based reconstruction (True Fidelity Image: TFI ™; GE Healthcare) to filtered back projection (FBP), and to determine the minimum tube current-time product in TFI withou...

Simplified Transfer Learning for Chest Radiography Models Using Less Data.

Radiology
Background Developing deep learning models for radiology requires large data sets and substantial computational resources. Data set size limitations can be further exacerbated by distribution shifts, such as rapid changes in patient populations and s...

Comparison of lung CT number and airway dimension evaluation capabilities of ultra-high-resolution CT, using different scan modes and reconstruction methods including deep learning reconstruction, with those of multi-detector CT in a QIBA phantom study.

European radiology
OBJECTIVE: Ultra-high-resolution CT (UHR-CT), which can be applied normal resolution (NR), high-resolution (HR), and super-high-resolution (SHR) modes, has become available as in conjunction with multi-detector CT (MDCT). Moreover, deep learning reco...