AIMC Topic: Radiographic Image Interpretation, Computer-Assisted

Clear Filters Showing 41 to 50 of 1260 articles

Automated Fast Prediction of Bone Mineral Density From Low-dose Computed Tomography.

Academic radiology
BACKGROUND: Low-dose chest CT (LDCT) is commonly employed for the early screening of lung cancer. However, it has rarely been utilized in the assessment of volumetric bone mineral density (vBMD) and the diagnosis of osteoporosis (OP).

Super-resolution deep learning reconstruction for improved quality of myocardial CT late enhancement.

Japanese journal of radiology
PURPOSE: Myocardial computed tomography (CT) late enhancement (LE) allows assessment of myocardial scarring. Super-resolution deep learning image reconstruction (SR-DLR) trained on data acquired from ultra-high-resolution CT may improve image quality...

Non-invasive derivation of instantaneous free-wave ratio from invasive coronary angiography using a new deep learning artificial intelligence model and comparison with human operators' performance.

The international journal of cardiovascular imaging
Invasive coronary physiology is underused and carries risks/costs. Artificial Intelligence (AI) might enable non-invasive physiology from invasive coronary angiography (CAG), possibly outperforming humans, but has seldom been explored, especially for...

Development and validation of computer-aided detection for colorectal neoplasms using deep learning incorporated with computed tomography colonography.

BMC gastroenterology
OBJECTIVES: Computed tomography (CT) colonography is increasingly recognized as a valuable modality for diagnosing colorectal lesions, however, the interpretation workload remains challenging for physicians. Deep learning-based artificial intelligenc...

CZT-based photon-counting-detector CT with deep-learning reconstruction: image quality and diagnostic confidence for lung tumor assessment.

Japanese journal of radiology
PURPOSE: This is a preliminary analysis of one of the secondary endpoints in the prospective study cohort. The aim of this study is to assess the image quality and diagnostic confidence for lung cancer of CT images generated by using cadmium-zinc-tel...

Learning Consistent Semantic Representation for Chest X-ray via Anatomical Localization in Self-Supervised Pre-Training.

IEEE journal of biomedical and health informatics
Despite the similar global structures in Chest X-ray (CXR) images, the same anatomy exhibits varying appearances across images, including differences in local textures, shapes, colors, etc. Learning consistent representations for anatomical semantics...

OMS-CNN: Optimized Multi-Scale CNN for Lung Nodule Detection Based on Faster R-CNN.

IEEE journal of biomedical and health informatics
The global increase in lung cancer cases, often marked by pulmonary nodules, underscores the critical importance of timely detection to mitigate cancer progression and reduce morbidity and mortality. The Faster R-CNN approach is a two-stage, high-pre...

Automated classification of chest X-rays: a deep learning approach with attention mechanisms.

BMC medical imaging
BACKGROUND: Pulmonary diseases such as COVID-19 and pneumonia, are life-threatening conditions, that require prompt and accurate diagnosis for effective treatment. Chest X-ray (CXR) has become the most common alternative method for detecting pulmonar...

Deep Learning-Based ASPECTS Algorithm Enhances Reader Performance and Reduces Interpretation Time.

AJNR. American journal of neuroradiology
BACKGROUND AND PURPOSE: ASPECTS is a long-standing and well-documented selection criterion for acute ischemic stroke treatment; however, the interpretation of ASPECTS is a challenging and time-consuming task for physicians with notable interobserver ...