AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Radiotherapy, Intensity-Modulated

Showing 11 to 20 of 281 articles

Clear Filters

A unified deep-learning framework for enhanced patient-specific quality assurance of intensity-modulated radiation therapy plans.

Medical physics
BACKGROUND: Modern radiation therapy techniques, such as intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT), use complex fluence modulation strategies to achieve optimal patient dose distribution. Ensuring their ...

Can knowledge-based planning models validated on ethnically diverse patients lead to global standardisation of external beam radiation therapy for locally advanced cervix cancer?

Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology
BACKGROUND AND PURPOSE: Knowledge-based planning (KBP) can consistently and efficiently create high-quality Volumetric Arc Therapy (VMAT) plans for cervix cancer. This study describes the cross-validation of two KBP models on geographically distinct ...

Deep learning-based synthetic CT for dosimetric monitoring of combined conventional radiotherapy and lattice boost in large lung tumors.

Radiation oncology (London, England)
PURPOSE: Conventional radiotherapy (CRT) has limited local control and poses a high risk of severe toxicity in large lung tumors. This study aimed to develop an integrated treatment plan that combines CRT with lattice boost radiotherapy (LRT) and mon...

Evaluation of AI-based auto-contouring tools in radiotherapy: A single-institution study.

Journal of applied clinical medical physics
BACKGROUND: Accurate delineation of organs at risk (OARs) is crucial yet time-consuming in the radiotherapy treatment planning workflow. Modern artificial intelligence (AI) technologies had made automation of OAR contouring feasible. This report deta...

A qualitative, quantitative and dosimetric evaluation of a machine learning-based automatic segmentation method in treatment planning for gastric cancer.

Physica medica : PM : an international journal devoted to the applications of physics to medicine and biology : official journal of the Italian Association of Biomedical Physics (AIFB)
PURPOSE: To investigate the performance of a machine learning-based segmentation method for treatment planning of gastric cancer.

Dose prediction via deep learning to enhance treatment planning of lung radiotherapy including simultaneous integrated boost techniques.

Medical physics
BACKGROUND: Recent studies have shown deep learning techniques are able to predict three-dimensional (3D) dose distributions of radiotherapy treatment plans. However, their use in dose prediction for treatments with varied prescription doses includin...

Advanced prediction of multi-leaf collimator leaf position using artificial neural network.

Medical physics
BACKGROUND: Multi-leaf collimators (MLCs) are crucial for modern radiotherapy as they ensure precise target irradiation through accurate leaf positioning. Accurate prediction of MLC leaf positions is vital for the effectiveness and safety of treatmen...

Evaluation and failure analysis of four commercial deep learning-based autosegmentation software for abdominal organs at risk.

Journal of applied clinical medical physics
PURPOSE: Deep learning-based segmentation of organs-at-risk (OAR) is emerging to become mainstream in clinical practice because of the superior performance over atlas and model-based autocontouring methods. While several commercial deep learning-base...

The implementation of knowledge-based planning with partial OAR contours for prostate radiotherapy.

Journal of applied clinical medical physics
PURPOSE: Intra- and inter-observer contour uncertainty is a continuous challenge in treatment planning for radiotherapy. Our proposed solution to address this challenge is the use of partial contours for treatment planning, focusing on uninvolved or ...

Synthetic CT generation from CBCT and MRI using StarGAN in the Pelvic Region.

Radiation oncology (London, England)
RATIONALE AND OBJECTIVES: This study evaluated StarGAN, a deep learning model designed to generate synthetic computed tomography (sCT) images from magnetic resonance imaging (MRI) and cone-beam computed tomography (CBCT) data using a single model. Th...