International journal of radiation oncology, biology, physics
Nov 14, 2023
Deep learning neural networks (DLNN) in Artificial intelligence (AI) have been extensively explored for automatic segmentation in radiotherapy (RT). In contrast to traditional model-based methods, data-driven AI-based models for auto-segmentation hav...
BACKGROUND: Deep learning has shown promising results to generate MRI-based synthetic CTs and to enable accurate proton dose calculations on MRIs. For clinical implementation of synthetic CTs, quality assurance tools that verify their quality and rel...
Journal of applied clinical medical physics
Nov 9, 2023
Quality of organ at risk (OAR) autosegmentation is often judged by concordance metrics against the human-generated gold standard. However, the ultimate goal is the ability to use unedited autosegmented OARs in treatment planning, while maintaining th...
BACKGROUND: The performance of deep learning segmentation (DLS) models for automatic organ extraction from CT images in the thorax and breast regions was investigated. Furthermore, the readiness and feasibility of integrating DLS into clinical practi...
Medical dosimetry : official journal of the American Association of Medical Dosimetrists
Oct 31, 2023
The aim of this study is to create a single institution-based machine learning model for a dose prediction generation tool for post-operative carcinoma of the tongue cases prospectively. Intensity-modulated radiotherapy (IMRT) plans for 20 patients w...
BACKGROUND: Ideally, inverse planning for HDR brachytherapy (BT) should include the pose of the needles which define the trajectory of the source. This would be particularly interesting when considering the additional freedom and accuracy in needle p...
Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology
Oct 26, 2023
MRI-guided radiotherapy (MRIgRT) is a highly complex treatment modality, allowing adaptation to anatomical changes occurring from one treatment day to the other (inter-fractional), but also to motion occurring during a treatment fraction (intra-fract...
BACKGROUND: Adaptive proton therapy workflows rely on accurate imaging throughout the treatment course. Our centre currently utilizes weekly repeat CTs (rCTs) for treatment monitoring and plan adaptations. However, deep learning-based methods have re...
The accurate delineation of organs-at-risk (OARs) is a crucial step in treatment planning during radiotherapy, as it minimizes the potential adverse effects of radiation on surrounding healthy organs. However, manual contouring of OARs in computed to...
BACKGROUND: Cone-beam computed tomography (CBCT) scanning is used for patient setup in image-guided radiotherapy. However, its inaccurate CT numbers limit its applicability in dose calculation and treatment planning.