BACKGROUND: The electronic portal imaging device (EPID) can be used in vivo, to detect on-treatment errors by evaluating radiation exiting a patient. To detect deviations from the planning intent, image predictions need to be modeled based on the pat...
Journal of applied clinical medical physics
Nov 25, 2024
BACKGROUND AND PURPOSE: Routine quality control procedures are still required for sCT based on artificial intelligence (AI) to verify the performance of the generators. The aim of this study was to evaluate three generators based on AI or bulk densit...
BACKGROUND: Accurate calculation of lung cancer dose using the Monte Carlo (MC) algorithm in CyberKnife (CK) is essential for precise planning. We aim to employ deep learning to directly predict the 3D dose distribution calculated by the MC algorithm...
Boron Neutron Capture Therapy (BNCT) represents a revolutionary approach in targeted radiation treatment for cancer. While the therapy's potential in precise targeting is well-recognized, a critical bottleneck remains in the accurate positioning of p...
INTRODUCTION: The delineation of organs-at-risk and lymph node areas is a crucial step in radiotherapy, but it is time-consuming and associated with substantial user-dependent variability in contouring. Artificial intelligence (AI) appears to be the ...
Journal of applied clinical medical physics
Nov 18, 2024
The integration of machine learning (ML) with radiotherapy has emerged as a pivotal innovation in outcome prediction, bringing novel insights amid unique challenges. This review comprehensively examines the current scope of ML applications in various...
BACKGROUND AND PURPOSE: Tumor bed (TB) is the residual cavity of resected tumor after surgery. Delineating TB from CT is crucial in generating clinical target volume for radiotherapy. Due to multiple surgical effects and low image contrast, segmentin...
Journal of applied clinical medical physics
Nov 15, 2024
BACKGROUND: Formulating a clinically acceptable plan within the time-constrained clinical setting of brachytherapy poses challenges to clinicians. Deep learning based dose prediction methods have shown favorable solutions for enhancing efficiency, bu...
Journal of applied clinical medical physics
Nov 14, 2024
OBJECTIVE: We investigated the feasibility of deep learning-based ultra-low dose kV-fan-beam computed tomography (kV-FBCT) image enhancement algorithm for clinical application in abdominal and pelvic tumor radiotherapy.